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KEY FEATURES OF GENE EXPRESSION DATA

‘LARGE p, SMALL n” PROBLEM:
* Very large number of variables (genes): from-§,000 to 10,000
» Small number of observations (cells): less than

MANY VARIABLES ARE NOISY OR NOT RELEVANT
TO CLASS PREDICTION

» Pearson correlation coefficient
» Distance based metrics
* Class separation: BSS(X)/WSS(X)



KEY FEATURES OF GENE EXPRESSION DATA

COMPLEX INTERACTIONS BETWEEN GENES; REDUNDANCY

Genes are points in a n-dimensional space

MOST OF THE ABNORMALITIES IN CELL BEHAVIOUR
ARE DUE TO IRREGULAR GENE ACTIVITIES

Look for “outlying” genes

GENE EXPRESSION PROFILES ARE TYPICALLY NON-GAUSSIAN
Independent Component Analysis



INDEPENDENT COMPONENT ANALYSIS (ICA)

THE MODEL: X=AS

X=(X,, X,, ..., X,) observed variables (E(X) =0
S=(S,, S,, ..., S,) latent variables (E(S) = 0)
A= nxk mixing matrix, k<n

THE VARIABLES S; ARE ASSUMED:
* To be statistically independent:

pdf (Sy, S ..., Sp) =11 pdf (S))

* To have non-Gaussian distributions



INDEPENDENT COMPONENT ANALYSIS (ICA)

Y=WX

Restrictions on the extracted variables Yj

« E(Y, Y)=E(Y,)E(Y) h# h,i=1, ..., k
(in order to reduce the number of free parameters)
« E(YP)=1

(conventional assumption)

For uncorrelated variables:
N (Yp Yo oo Y) = (Y, Yo oo, Vi) = ZJ(Y)
(where [ denotes mutual information and J denotes negentropy)



Therefore,

the less dependent are the most non-Gaussian ones

ICA leads to meaningful results whenever the proba
Xis far from Gaussian

oility distribution of

ICA IN GENE EXPRESSION DATA ANALYSIS:

» G. Hori et al. (2002) - ISMB2002
» W. Liebermeister (2002) - Bioinformatics
 X. Liao et al. (2002) - ICASSP 2002, IEEE International Confere



THE PROPOSED SOLUTION

k independent components are extracted from the training set

the p genes are sorted in increasing order according to their
absolute scores on each component

these k marginal rankings are summarized by taking, for'each gene,
the highest value

select the m (m<<p) genes located in the last m positions of this joint
ranking



THE LYMPHOMA DATA SET (Alizadeh et al.,

C = 3 classes
p = 4026 genes
n=62cells (n,=11, n,=9, n;=42)

NEAREST SHRUNKEN CENTROIDS METHOD (Tibshirani e

Nearest centroid classification after shrinking each centroid tc
the overall one.

If a gene is shrunken to zero for all classes, then it is dropped
from the allocation rule.



Lymphoma data set: cross-validated
misclassification rates (as function of m)
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Lymphoma data set: scatter plot matrix of the last
5 genes surviving the shrinkage procedure
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Lymphoma data set: scatter plot matrix of the last
5 genes of the ranking obtained by ICA
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« Alternatives to the criterion for building the joint ranking

« How to choose the number k of the components

» How to choose the number m of retained genes

 Possible interactions between the proposed selection methot
and different allocation rules



