A MIAME for Toxicogenomics - Towards Harmonization of a New Field

Susanna-Assunta Sansone1,
Weida Tong2 and Michael D. Waters3

1European Bioinformatics Institute,
EMBL-EBI, Cambridge, UK

2Center for Toxicoinformatics,
NCTR, FDA, Jefferson, AR, USA

3National Center for Toxicogenomics,
NIEHS, NIH, Research Triangle Park, NC, USA

NETTAB, Bologna, Italy, November 2003
Talk Structure

- Toxicogenomics
 - Definition and objectives
 - Potentials, challenges and priority

- Towards harmonization of this new field
 - Required, ongoing and accomplished efforts

- Focus on array-based toxicogenomics experiments
 - Tox Working Group within MGED
 - MIAME/Tox and MIAME/Tox-compliant databases
Toxicogenomics

• Definition and objectives
• Potentials, challenges and priority

Towards harmonization of this new field
• Required, ongoing and accomplished efforts

Focus on array-based toxicogenomics experiments
• Tox Working Group within MGED
• MIAME/Tox and MIAME/Tox-compliant databases
Toxicogenomics

is the study of the
response of a genome to
environmental stressors and toxicants
Toxicogenomics

Compound/stressor treatment → Euthanasia → Target organ

- Conventional toxicology
 - Physical parameters
 - Clinical Chemistry
 - Pathology
 - Histopathology

- Transcriptomics
 - RNA

- Proteomics
 - Proteins

- Metabonomics
 - Blood/Urine

- Conventional toxicology
 - Cytotoxicity
 …etc.
The Objectives

- **Compare toxicogenomic effects** of chemicals/stressors across species
 - Yielding **signatures** of altered gene/protein expression

- **‘Phenotypically anchor’** these changes with conventional toxicology data
 - Classifying **effects** as well as **disease phenotypes**

- **Delineate global changes** as pharmacologic, adaptive or toxic outcomes
 - Defining **biomarkers**, sequence of **key events**, **mechanisms** of action
The Potentials

- Holding promises for
 - Drug/biologics discovery and development
 - Target selection, risk assessment and quality control
 - Chemical/drug-induced disease processes
 - Evaluation and prediction
 - Medical practice
 - Diagnostic, therapeutic decisions and monitoring
 - Regulatory science (*health and environmental*)
 - Support and facilitate the decision-making process

- Improving methods to assess toxicity
 - Gain insight into the molecular mechanisms
 - Reduce the length of long-term toxicology study
 - Limit the numbers of species used
Reduction in the use of animal experiments

E.U. Starts a Chemical Reaction

Brussels—If the European Union gets its way, toxicology will be booming in Europe. And, to hear manufacturers tell it, their industry is in decline.

Last week, officials from the European Commission, Europe's executive body, and industry and environmental groups here to discuss proposed legislation to require chemical manufacturers to run extensive safety tests on 11 of the 30,000 most common chemicals, many of which have been on the market for decades. The proposal would also restrict the use of an estimated 150 chemicals considered the most hazardous to humans and the environment. The new law introduces a radical paradigm shift. The E.U.'s Margot Wallström wants the chemical industry to shoulder the burden of safety testing.

Paradigm shift. The E.U.'s Margot Wallström wants the chemical industry to shoulder the burden of safety testing.

Europe Whittles Down Plans for Massive Chemical Testing Program

MADRID—The European Commission (EC) has scaled back a major piece of legislation on safety testing of commercial chemicals. Yet even in its revised form, the proposed law would represent one of the most ambitious toxicological programs ever undertaken.

An earlier version of the legislation, which had been in the works for more than 2 years, would have required chemical makers to perform extensive toxicological and environmental tests on the 30,000 chemicals most commonly used in commerce (Science, 18 April, p. 405). Under the latest draft, released by the EC last week, the testing requirements would apply only to chemicals produced in amounts greater than 10 tons, nated flame retardants, phthalates used as plastic softeners, and perfluorinated compounds—are likely to be severely restricted or banned, the EC says.

The testing program, to be called REACH (Registration, Evaluation, and Authorization of Chemicals), would require some safety tests of chemicals produced in amounts of between 1 and 10 tons. But such substances would be exempt from tests of reproductive effects and environmental persistence. The changes mean that “we will have no idea how far the chemicals get into the environment,” contends Stefan Scheuer of the European Environmental Bureau, a coalition of 140 non-governmental organizations.

R&D Unlikely to Cover Costs

The requirements would apply only to chemicals produced in amounts greater than 10 tons, nated flame retardants, phthalates used as plastic softeners, and perfluorinated compounds—are likely to be severely restricted or banned, the EC says.

Alternative (Non-animal) Methods for Chemicals Testing: Current Status and Future Prospects

A Report prepared by ECVAM and the ECVAM Working Group on Chemicals
The Challenges

- **Technical issues**
 - Reproducibility, specificity, sensitivity and accuracy
 - International ‘gold standards’ for
 - Reference RNA
 - Genes, platform level annotation
 - Proteins, biomarker validation
 - Body fluids, target-surrogate relationships
 - Histopathology, images and pattern recognition
 - Reference algorithms, computational toxicogenomics

- **Regulatory issues**
 - Consensus on the application/interpretation of these data
 - Technical validation
 - Establishment of QC and QA systems
 - Electronic submission format

- **Infrastructures required!**
“…Encouraging and empowering scientists to provide results in a structured and computable format alongside publication”

(Mark Boguski)
Toxicogenomics

Database – The Potentials

- Centralization of the information
 - Providing a long term storage
 - Easy data access and data sharing

- Data comparisons
 - Giving critical mass to the datasets
 - Allowing validation of technology

- Integration the different domains
 - Genomics, conventional toxicology and experimental

- Annotation harmonization
 - Allowing curation
 - Improving annotation based on new computational predictions or experimental evidences
Toxicogenomics

Database - The Challenges

- Breadth, depth, and uniformity of the information
 - Information intensive field => define minimal descriptors
 - Lots of free text descriptions => use CVs
 - No lack of terminologies => promote harmonization
 - Semantic heterogeneity => develop ontologies
 - Heterogeneous formats => use existing standards

- Interoperability on an international scale to allow comparability

- Standards are essential!
Toxicogenomics

An International Public Forum

- EMBL-EBI and International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI)
- NIH NIEHS National Center for Toxicogenomics (NCT) and National Toxicology Program
- FDA National Center for Toxico- logical Research (NCTR) and Center for Toxicoinformatics
Establishing a common, public infrastructure for toxicogenomics data on an international scale

Towards harmonization

But…. where start from?....
Talk Structure

- **Toxicogenomics**
 - Definition and objectives
 - Potentials, challenges and priority

- **Towards harmonization of this new field**
 - Required, ongoing and accomplished efforts

- **Focus on array-based toxicogenomics experiments**
 - Tox Working Group within MGED
 - MIAME/Tox and MIAME/Tox-compliant databases
Toxicogenomics
- Definition and objectives
- Potentials, challenges and priority

Towards harmonization of this new field
- Required, ongoing and accomplished efforts

Focus on array-based toxicogenomics experiments
- Tox Working Group within MGED
- MIAME/Tox and MIAME/Tox-compliant databases
Toxicogenomics

Conventional toxicology
- Physical parameters
- Clinical Chemistry
- Pathology
- Histopathology

Transcriptomics

Proteomics

Metabonomics

Conventional toxicology
- Cytotoxicity
...etc.
Conventional Toxicology

- Harmonization is required!
- No initiative is known at the present time
- Lots of controlled vocabularies (CV)
 - Public, e.g.: NIEHS-NTP, LOINC, RENI
 - Proprietary, e.g.: UMLS, SNOMED
- Problems:
 - Specie-specific CVs hamper cross species comparisons
 - Just CVs not ontologies!

Conventional toxicology
- Physical parameters
- Clinical Chemistry
- Pathology
- Histopathology

Transcriptomics
Proteomics
Metabonomics

Conventional toxicology
-Cytotoxicity
...etc.
Starting…

November 2003, London first meeting to establish a harmonization steering committee for Metabonomic/Tox standards
Proteomics

- Ongoing…
- HUPO-PSI (Proteomics Standards Initiative)

Data exchange format in XML
 - PSI-PI Working Group
 - Protein interaction
 - IntAct, MINT, BIND, DIP…
 - PSI-MS Working Group
 - Mass Spectroscopy
 - Proteomics integration Working Group
 - PSI-MI+ PSI-MS+ 2D-Gel + Others
 - PEDRo Schema

Harmonization

Conventional toxicology
- Physical parameters
- Clinical Chemistry
- Pathology
- Histopathology

Transcriptomics

Proteomics

Metabonomics

Conventional toxicology
- Cytotoxicity
 …etc.
Transcriptomics

- Nearly accomplished!
- MGED Society
 - Standard for contextual information
 - MIAME Working Group
 - Standard for experiment annotation
 - MGED Ontology Working Group
 - Standard for recording controls and normalisation methods
 - Normalization Working Group
 - Standard for data model and exchange
 - MAGE Working Group
 - Standard for toxicogenomics
 - Tox Working Group
Toxicogenomics
- Definition and objectives
- Potentials, challenges and priority

Towards harmonization of this new field
- Required, ongoing and accomplished efforts

Focus on array-based toxicogenomics experiments
- Tox Working Group within MGED
- MIAME/Tox and MIAME/Tox-compliant databases
Talk Structure

- Toxicogenomics
 - Definition and objectives
 - Potentials, challenges and priority

- Towards harmonization of this new field
 - Required, ongoing and accomplished efforts

- Focus on array-based toxicogenomics experiments
 - Tox Working Group within MGED
 - MIAME/Tox and MIAME/Tox-compliant databases
Starting from array-based toxicogenomics experiments

A MIAME for Toxicogenomics!

EMBL-EBI and ILSI-HESI

NIEHS-NCT and NCTR-FDA

MIAME/Tox
MIAME/Tox objectives

- Standard data representation
 - Worldwide scientific consensus on the **minimal information descriptors** for toxicogenomics experiments

- Data harmonization for conventional toxicology
 - Controlled vocabularies and ontologies

- Data storage and data sharing
 - Use of **MAGE-OM** and **MAGE-ML** standards by MGED
 - Data management softwares
 - LIMSs (Laboratory Information Management Systems)
 - Public databases

- Common, public infrastructure for toxicogenomics data on an international scale
Minimal descriptors for microarray experiments
Hybridisation

Minimal descriptors for microarray experiments

- Sample source
- Sample treatments
- Toxicological metadata
- Extraction protocol
- Labeling protocol

Final data

Normalisation

Experiment

Sample

Hybridisation

Array

MIAME/Tox
MIAME/Tox document/checklist

Minimal descriptors

Source:
“Specifications for the conduct of the studies” (NIEHS-NTP)

- A 210 page document covering all aspects of NIH/NIEHS NTP toxicology studies
- NOT minimal descriptors BUT maximal descriptors! From facility requirements and animal care to data collection and storage…..
Sample source

Sample treatments

- Toxicological metadata
- Extraction protocol
- Labeling protocol

Sample treatments

- Facilities details
- Cell culture and growth conditions
- Animal husbandry/housing details
- Treatment type
 - Compound
 - CAS#, chemical structure/molecular formula
 - Vehicle for exposure
 - Exposure method
 - Duration
 - Dose (and unit)
- Date/time at death or at sacrifice
- Sacrifice method
MIAME/Tox

Toxicological assessments

- **Clinical observations, e.g.**
 - Weight, survival
 - Signs (e.g., general, behavior)
 - Lesions...etc.

- **Gross necropsy examination, e.g.**
 - Organs and tissues examination, weight lists...etc.

- **Clinical pathology, e.g.**
 - Hematology
 - Clinical chemistry
 - Other parameters
 - Sperm morphology and vaginal Cytology evaluation (SMVCE), etc.

- **Histopathology evaluation, e.g.**
 - System
 - Organ
 - Sites
 - Morphology (s) and qualifier (s)
Common, public infrastructure for toxicogenomics data on an international scale

…..Current status…..
- **ArrayExpress** public repository for array-based data
 - MGED standards-supportive, and MIAME/Tox-compliant
 - Curation Team
 - Supporting data in publications (acc. num., reviewers access)

- Not an archive but a dynamic environment!
 - Mining agent to update genome annotation
 - DNA, protein and functional level
Pathology Observations data sheet

<table>
<thead>
<tr>
<th>Sample identifier</th>
<th>Body weight (g)</th>
<th>Brain weight (mg)</th>
<th>Target Organ</th>
<th>Organ weight (mg)</th>
<th>Site</th>
<th>Morphology</th>
<th>qualifier</th>
<th>value</th>
<th>qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>S10 [GSK]</td>
<td>150</td>
<td>2500</td>
<td>Liver</td>
<td>7850</td>
<td>Left Lat Lobe</td>
<td>Necrosis</td>
<td>Distribution</td>
<td>-</td>
<td>Duration</td>
</tr>
<tr>
<td>S10 [GSK]</td>
<td>150</td>
<td>2500</td>
<td>Kidney</td>
<td>1950</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S10 [GSK]</td>
<td>150</td>
<td>2500</td>
<td>Liver</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S10 [GSK]</td>
<td>150</td>
<td>2500</td>
<td>Kidney</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S10 [GSK]</td>
<td>150</td>
<td>2500</td>
<td>Kidney</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S10 [GSK]</td>
<td>150</td>
<td>2500</td>
<td>Kidney</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Controlled vocabulary from NIH/NIEHS-NTP Pathology Code Tables (PCT)
Toxicogenomics infrastructures @ EBI

DATA SUBMISSION
- WWW

DATA QUERY
- WWW

DATA ANALYSIS
- WWW

Tox-MIAMEExpress (MySQL)

MAGE-ML

Repository

Warehouse

ArrayExpress (Oracle)

Data matrix

HTML

Expression Profiler

Other Bioinformatic Databases @ EBI

DATA IMPORT/EXPORT

DATA SUBMISSION

MIAME-compliant MAGE-ML pipelines
(Affymetrix, Agilent, NIEHS, NCI, TIGR, SMD, Sanger Institute)

Other Microarray (GEO, CIBEX) Toxicogenomics Database

Data Analysis Softwares
MIAME/Tox-compliant databases

- Chemical Effects in Biological Systems (CEBS) Knowledge base
 - MGED standards-supportive, and MIAME/Tox-compliant
- Reference toxicogenomic information system
 - Studies on environmental chemicals/stressors and their effects
- Relational and descriptive data compendia
 - Toxicologically important genes, SNPs, mutants, and biological phenotypes
- Hypothesis-driven and discovery research
 - Environmental toxicology and risk assessment
CEBS A Sequence-Driven Knowledge Base

Molecular Expression Datasets
- Global Gene Expression
- Global Protein Expression
- Global Molecular Interaction
- Global Metabolites
- Other

Phenotypic Datasets
- Toxicology
- Clinical Pathology
- Histopathology
- Other Phenotypes

CEBS
- AUTOMATIC GENOMIC SEQUENCE ALIGNMENT

Annotations
- Sequence Tags
- Gene Model

Literature
- ENSEMBL
- MIAME/Tox

METHOD AND SYSTEM FOR DEVELOPING AND QUERYING A SEQUENCE DRIVEN CONTEXTUAL KNOWLEDGE BASE
INVENTORS: M. WATERS, J. SELKIRK, R. TENNANT
CEBS-Content

Intramural and Extramural Partnerships

Toxicogenomics Research Consortium
DU, MIT, OHSU, UNC, FHCC-UWA & NIEHS Microarray Group

Microarray and Proteomics Groups, Tox/Path Team, Database Group

External Partnerships
EBI, NCI, NCTR, ILSI

Data Sharing MAGE-ML

Chemical Effects in Biological Systems (CEBS) Knowledge Base

National Toxicology Program
MIAME/Tox-compliant databases

- EMBL-EBI
- ILSI-HESI

Toxicogenomics

- *Toxicoinformatics Integrated System (TIS)*
 - MIAME/Tox-compliant, will be MGED standards supportive
 - NCTR and FDA researches
 - Local installation

- Phenotypically anchor the –omics data and chemical structure information

- ArrayTrack first module for microarray data
Toxicoinformatics Integrated System (TIS)
MIAME/Tox progressing

- Presented and circulate for consensus
 - **MGED Tox Working Group**
 - Includes Toxicogenomics, Pharmacogenomics, Ecotoxicogenomics communities (*MIAME/Env*) and Nutrigenomics (*MIAME/Nut*)
 - **Journals**
 - *Nature*, the *Nature* group of journals, *Cell*, *The Lancet*, *EMBO*, *Toxicology Pathology* and *EHP* require MIAME-compliant information
 - **ECVAM-ICCVAM-NICEATM**
 - Committee on ‘Validation Principles And Approaches For Toxicogenomics-Based Test Systems’, December 2003
 - **Society of Toxicology**
 - Database and Standards Symposia, March 2004
 - **FDA Pharmacology/Toxicology Advisory Committee**
 - Microarray Database Projects as first step in guidance process, June 2003
Guidance for Industry
Pharmacogenomic Data
Submissions

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

Comments and suggestions regarding this draft document should be submitted within 90 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register.

For questions regarding this draft document contact (CDER) Lawrence Lesko 301-594-5690, (CBER) Raj Puri 301-827-0471, or (CDRH) Steve Gutman 301-594-3084.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)
Center for Biologics Evaluation and Research (CBER)
Center for Devices and Radiological Health (CDRH)

November 2003

 Procedure

FDA Pharmacology/Toxicology Advisory Committee

http://www.fda.gov/cder/guidance/5900dft.doc
Acknowledgments

- **EMBL-EBI**
 - Alvis Brazma
 - Microarray Informatics Team

- **NCTR-FDA**
 - Dan Casciano (Director)
 - Weida Tong

- **MGED Society**
 - Working Groups

- **NIH-NIEHS NCT and NTP**
 - Ray Tennant (Director)
 - **Mike Waters**
 - Pierre Bushel
 - Jennifer Fostel

- **ILSI-HESI Genomics Committee**
 - Syril Pettit
 - Bill Mattes
Resources

www.mged.org
 • MGED Society and Working Groups and mailing lists

mged-toxico@lists.sourceforge.net
 • Toxicogenomic Working Group mailing list

www.niehs.nih.gov/nct
 • CEBS Knowledge base

www.ebi.ac.uk/microarray
 • ArrayExpress and Tox-MIAMExpress schema-access to code

www.nctr.fda.gov
 • ArrayTrack and TIS