A quest for EDC-related genes in the context of biomedical literature

Massimo Ubaldi, Laura Soverchia, Roberto Ciccocioppo, Gilberto Mosconi and Alberta Maria Polzonetti

Department of Pharmacological Sciences and Experimental Medicine University of Camerino (UNICAM)

Dipartimento di Scienze Morfologiche e Biochimiche Comparate University of Camerino (UNICAM) Developing a custom-made, low-density, microarray chip to detect the presence of the Endocrine Disrupting Compounds (EDCs) in fish tissues.

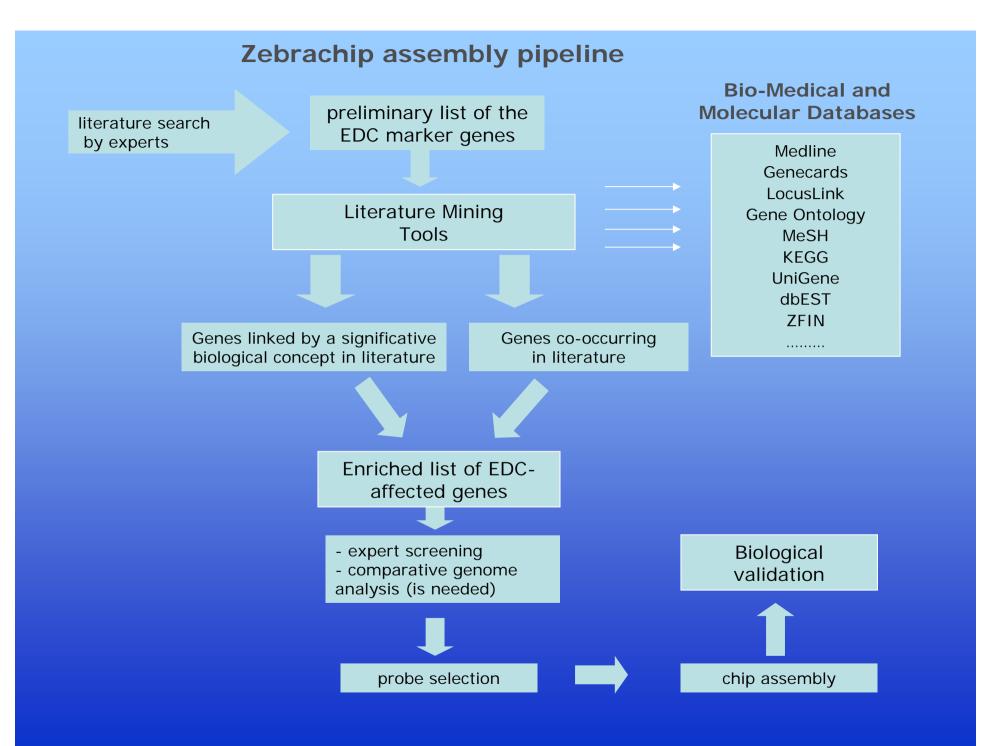
The EDCs encompass a vast number of synthetic chemicals and naturally occuring compounds that released in the environment can influence endocrine activity on wild vertebrate species and humans.

The assay we are developing is based on the assessment of **trascriptional signature** of zebrafish (*Danio rerio*), as a animal model, following EDCs exposure.

Method

Relevant genes were identified through a knowledge-based search of the existing literature. The literature searches were either of biological databases or journal publications and performed by trained endocrinologists.

GENES UNDER XENOESTROGEN CONTROL		
Cathepsin D (Cat D)	Fish	Carnevali and Maradonna 2003
Eggshell protein (ZR)	Fish	Aruke et al 1997
Oxidase Cytochrome (CYP1A1)	Fish	Anderson et al 1996
Aryl Hydrocarbon Receptor Repressor (AhRR)	Fish	Maradonna et al 2004
Estradiol receptor (ER)	Fish	Polzonetti et al 2004
Vitellogenin (VTG)	Amphibian	Kloas et al 2002
Retinol binding protein (RBP)	Amphibian	Mc Kearin and Shapiro 1988


Moreover we utilized some of the available literature mining tools to search for genes potentially related to our biological theme even if not yet directly characterized in that contest. Some tools are available to analyze the significative expressed genes in the contest of the knowledge collected in the biomedical literature.

Microarray analysis
List of expressed genes
Literature Mining Tools

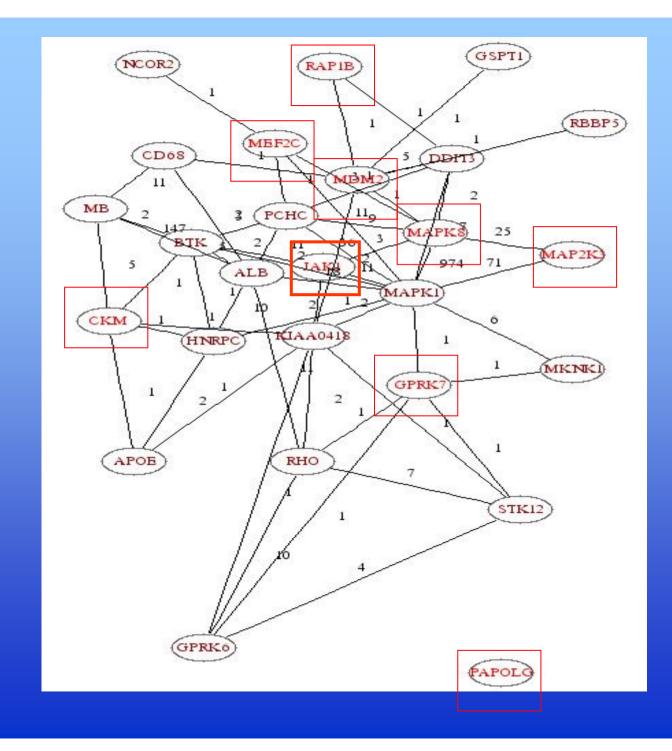
Biological picture of a subset of analyzed genes Pathways Coordinate regulation

Some Available Tools To Mine The Biomedical Literature.

Name	Sources	Description	Usage
MedMiner	GeneCards PubMed	Filters and organizes large amounts of textual and structured information returned from public search engines like GeneCards and PubMed	Input: gene names, general concepts, disease names Output: relevant citations in the abstracts grouped by keywords
GoMiner	Gene Ontology	Organizes list of genes in the context of the Gene Ontology	Input : list of genes Output : input genes in the GO tree contest
MedGene	MeSH LocusLink	Summarizes and estimates the realtive strength of all human gene-disease relantionship in Medline.	Input: list of genes Output: frequency of gene- disease occurrence in Medline
XplorMed	PubMed MeSH	Analyze for relationship between words in a list of abstracts acquired following a PubMed search.	Input: keywords Output: level of terms association in Medline
PubGene	PubMed GO MeSH	Browse literature or sequence networks, search literature articles and search MeSH or ontology terms associations for a set of genes	Input : genes set Output : literature, GO, MeSH associations
PubMatrix	PubMed	Simple text based mining of the PubMed	Input : genes set, keywords Output : frequency of co- occurrence matrix
EASE	LocusLink GenBank UniGene GO PubMed	Biological theme determination for lists of genes; online analysis tool	Input: genes set Output: annotations, GO categories, gateway to PubMatrix, MedMiner, PubMed, LocusLink, PubGene.
GIS	PubMed	Text-mining system focused on four types of gene-related information: biological functions, associated diseases, related genes and gene- gene relations	Input : genes set Outpu t: information on biological functions, associated diseases and related genes for the gueried list

PubGene

http://www.pubgene.org/ Jenssen et al., *Nature Genet*ics 28(1):21-8, 2001.


Network of co-occurrence of gene symbols or short term gene names in the title or in abstract in MEDLINE

- 1. Construction of a gene-article index.
- 2. Annotation of the gene network with potential biological functions using the keywords or MeSH associated with each paper.
- 3. Link of two genes if they occurred in the same article.
- 4. Graphic representation of genes by a node in the network and connecting link if the genes co-occurred.
- 5. Strength of link: weighted by the number of occurrences of a particular pairing.

		Human	Mouse	Rat
	Number of Genes, Primary Symbols	25,528	38,729	5,325
	Number of Genes, Synonym Names	28,036	40,636	6,374
	Number of Proteins, Primary Symbols	9,172	6,000	3,226
Statistics	Number of Proteins, Synonym Names	60,413	35,896	20,458
(PubGene 2.1, August 2003 update)	Gene Pair Associations, Text	482,818	49,962	26,056
	Protein Pair Associations, Text	1,308,974	842,894	565,382
	Gene Pair Associations, Sequence	1,232,545	1,543,828	110,106
	Protein Pair Associations, Sequence	276,962	125,486	51,212
	MeSH Associations	3,492,050	957,611	669,799
	Ontology Associations	643,535	170,590	122,895

Signal Transduction/Cell Cycle EDC-related genes

G e n e	Symbol
mitogen-activated protein kinase kinase 3	map2k3
G protein-coupled receptor kinase 7	gprk7
mitogen-activated protein kinase 8	mapk8
creatine kinase, muscle	ckm
myocyte enhancer factor 2c	mef2c
myogenic differentiation	myod
heat shock protein 90-beta	hsp90b
RAS related protein 1b	rap1b
murine double minute 2 homolog	mdm2
elongation factor 1-alpha	ef1a
poly(A) polymerase gamma	Papolg

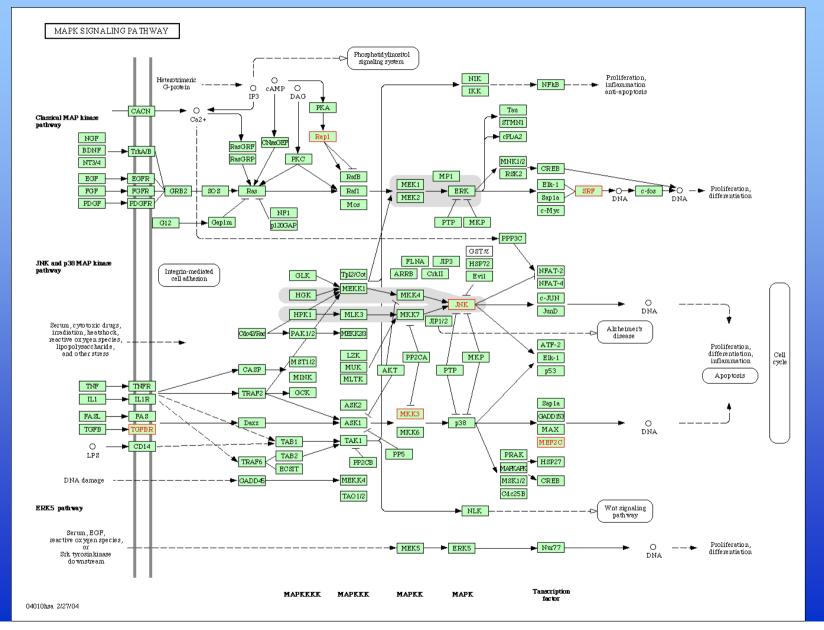
JAK1 Janus kinase 1 (a protein tyrosine kinase)

Locus ID: *Hs* 3716 *Dr* 30280

Comparative evaluation

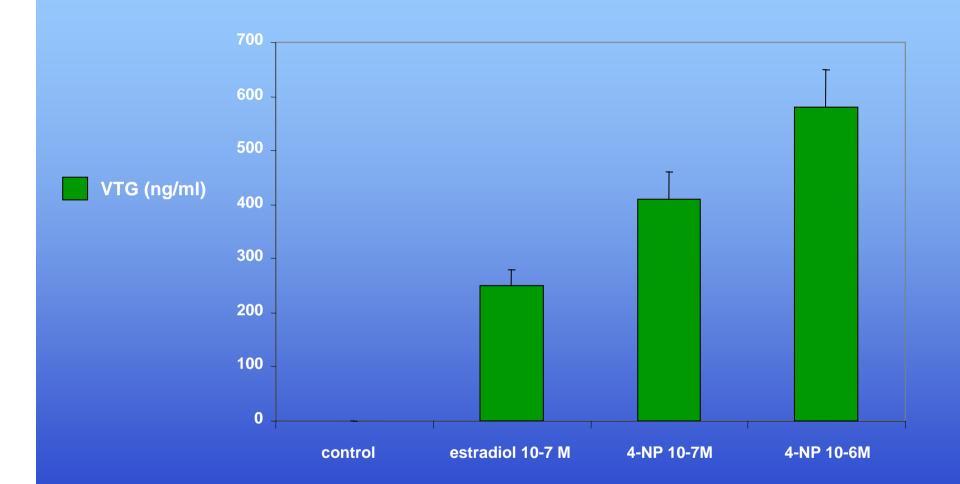
Homologene analysis

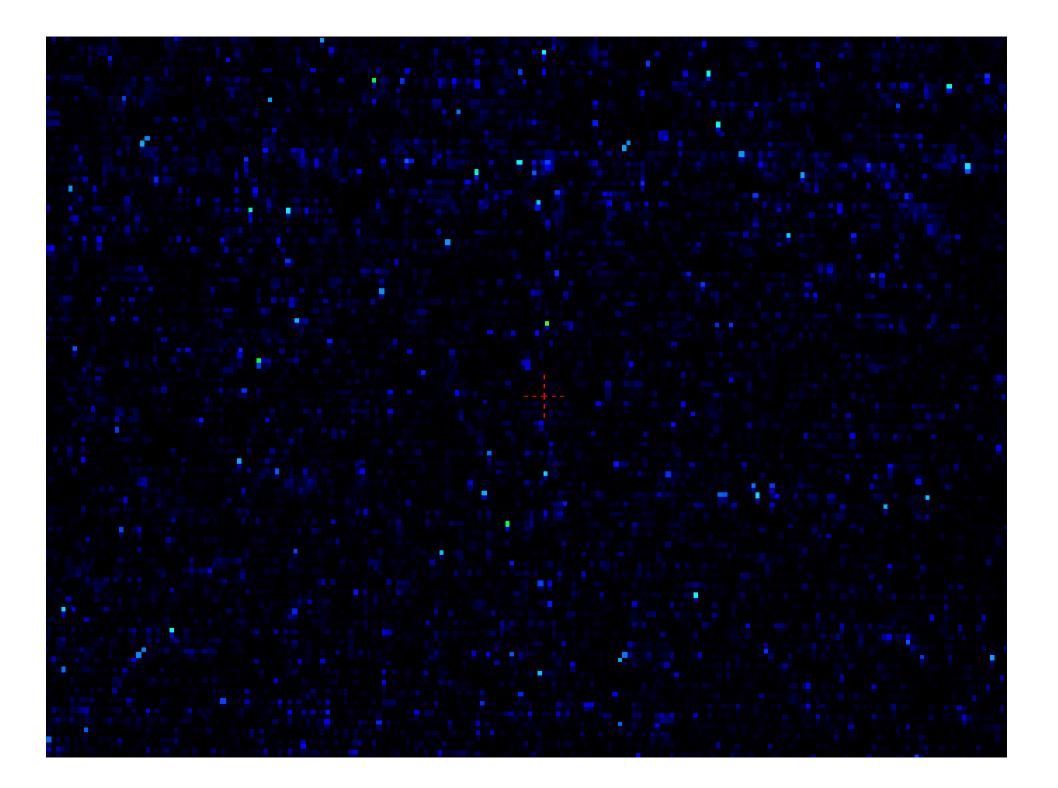
Literature


ProtEST 62.93 % / 1137 aa similarity with Hs

Other tools: BLAST Pipmaker Blat Hortologue evidences: A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences Gates, M.A. et al. Genome Res. 9(4):334-347

Functional evaluation


JAK1 is a large, widely expressed membrane-associated phosphoprotein. JAK1 is involved in the interferonalpha/beta and -gamma signal transduction pathways.


KEGG Pathways Database (Kyoto Encyclopedia of Genes and Genomes) http://www.genome.ad.jp/kegg/kegg2.htm

Zebrafish GENE	Symbol	Locus ID
glucose-6-phosphate dehydrogenase	g6pdl	30720
cytochrome P450, subfamily I, polypeptide 1	cyplal	140634
cytochrome P450, 19a	cyp19a	30390
glutathione S-transferase M	gstm	324366
peroxisome proliferator activated receptor beta	pparb	30750
fatty acid desaturase 2	fads2	140615
lactate dehydrogenase	ldha	30496
aryl hydrocarbon receptor 1	ahr1	246224
mt cytochrome c oxidase subunit II	mtco2	140540
mt cytochrome c oxidase subunit III	mtco3	140541
mt cytochrome b	mtcyb	140512
hydroxysteroid (17-beta) dehydrogenase	hsd17b4	393105
Vitellogenin 1	vgl	64257
zona pellucida glycoprotein	zp2	30593
retinol binding protein	rbp1	171477
macrophage stimulating 1 (hepatocyte growth factor-like)	mst1	259260
integrin, beta 1	itgb1	378714
RAS related protein 1b	rap1b	215449
murine double minute 2 homolog	mdm2	30637
elongation factor 1-alpha	ef1a	30516
myogenic differentiation	myod	30513
mitogen-activated protein kinase kinase 3	map2k3	65239
G protein-coupled receptor kinase 7	gprk7	373871

Zebrafish GENE	Symbol	Locus ID
heat shock protein 47	hsp47	30449
heat shock protein 70	HSP70	30671
metallothionein	mt	30282
cathepsin D	ctsd	65225
jun B proto-oncogene	JUNB	407086
tumor protein p53	₽53	30590
c-fos serum response factor	SRF	30431
parathyroid hormone receptor 1	Pthr1	30629
vitellogenin 3, phosvitinless	vg3	30518
thyroglobulin	tr	368212
matrix metalloproteinase	mmp2	337179
myosin regulatory light chain	mylip	335888
actin, alpha 1	actal	58114
keratin 8	krt8	352911
gonadotropin-releasing hormone 2	gnrh2	353222
activin A receptor, type IB	acvr1b	30183
activin receptor IIa	acvr2a	30437
inhibin, beta B	inhbb	30275
follistatin	fst	30235
janus kinase	jak1	30280
mitogen-activated protein kinase 8	mapk8	65236
creatine kinase, muscle	ckm	30095
myocyte enhancer factor 2c	mef2c	30572
heat shock protein 90-beta	hsp90b	30573

