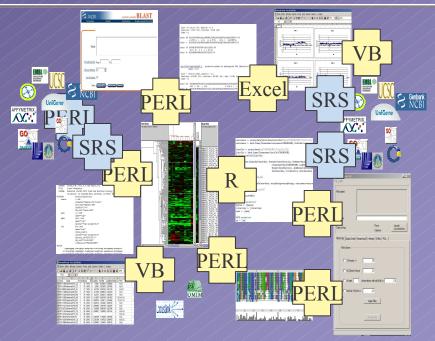


Easy and user-friendly workflow management based on the data-morphing concept

Stéphane GRAZIANI ISoft www.isoft.fr/bio

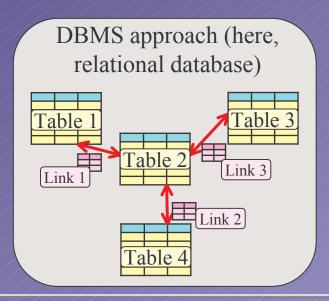


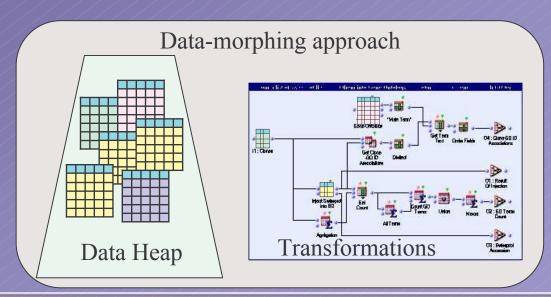
Integration in Biology

Data-morphing: an innovative approach for:

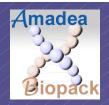

- Data integration
 - Very large volume
 - Heterogeneous data (Nature, format, access)
 - Concepts in constant evolution
- Tools integration
 - Heterogeneous formats
 - Different languages and environments
- Experimental methodology
 - From lab bench to web
- Evolutivity Reactivity
 - New data
 - New analyses

25000 gene?





Underlying concepts

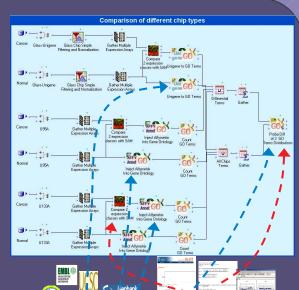

Fusion of Workflow and Dataflow

- Data-heap:
 - Principle = No a-priori structure of the data
 - Data is stored unstructured, reduced to the smallest atoms of information.
 - Data semantics is given by the way it is used
- Data-morphing
 - Data-driven chaining of single transformation steps
 - Very efficient data transformation engine (1 million records per second)
 - No limit in the volume of treated data
 - No programmation
 - No need of a pre-existing data structure

Easy pipeline definition

A "biologist" speaking tool

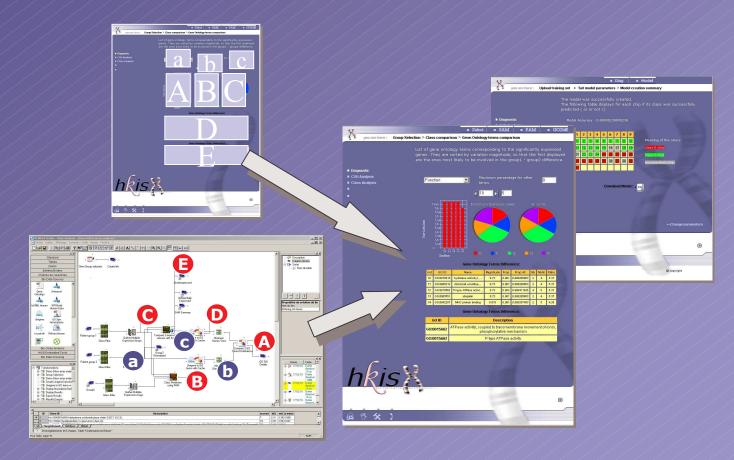
- Definition of pipelines in an <u>homogeneous</u> environment
 - Focus on biological issues
 - Real-time
 - Gain in:
 - Quality
 - Productivity
 - Methodology
 - Execution time
 - Dramatically shorten experimentation cycles

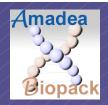

Features:

- <u>Instantaneous</u> connexion to any biological data sources
- <u>Intelligent linking</u> of any data source to any other
- Important panels of biological data analysis tools
- Library mechanism for easy non-programmatic extension

Real-time

- -Access to data
- -Data linking
- -Data analysis
- -Parameter tests
- -Hypotheses tests


Data-morphing provides the <u>right data</u> at the <u>right place</u> at the <u>right moment</u>



Web interfaces

- Immediate publication of applications through the web
 - Interactive graphical interfaces for the end user

Demonstration

- Quick overview of the platform
- How to develop an analysis pipe-line
 - Example: Starting from raw DNA chips data, normalize these data, and compare two classes of samples. From the differentially expressed genes, obtain:
 - A table showing per gene, with which disease it can be linked
 - The list of differentially distributed metabolic functions and the associated bibliography.

– Steps:

- Connexion to chips data
- Normalization and construction of a summary table
- Link to Refseq to obtain Gene information, including link to OMIM diseases
- Link to OMIM to get disease title, and creation of a crossed table
- Class comparison using SAM -> List of differentially expressed genes
- Injection into the Gene Ontology Graph
- Comparison with functions in the whole chip to get differentially distributed functions

