
Discovery of conserved translational regulatory signals
with the GeneHuggers bioinformatics application development framework

Jason S. Iacovoni and Herve Prats
Institut National de la Sante et de la Recherche Medicale INSERM U589, Hormones, Facteurs de

Croissance et Physiopathologie Vasculaire, Institut Federatif de Recherche Louis Bugnard, C. H. U.
Rangueil, 31403 Toulouse Cedex 04, France.

ABSTRACT

We have created an application development framework that facilitates the creation of customized
bioinformatics applications, code-named GeneHuggers. A large number of functions required by di-
verse applications are provided through a collection of Objective-C objects. In addition, GeneHug-
gers utilizes an embedded FireBird SQL database engine for managing annotations and sequences
as well as results obtained through programmed analyses. Any required application can be integrat-
ed into the framework by wrapping that tool into an object with its own specialized methods and
data types. In addition to wrapping commonly used programs such as blast, spidey, hmmer and
rnamotif, we have also completely wrapped the FireBird API into a set of object methods, permit-
ting the use of SQL features without directly interacting with the FireBird API functions. We are
providing GeneHuggers as an open source distribution, under the GNU General Public License, and
have utilized Doxygen to create extensive source documentation so that programmers interested in
developing customized applications can take advantage of our work and simplify the coding of their
actual application by using the objects provided by GeneHuggers. To exemplify the application de-
velopment process using the GeneHuggers framework, we will present our work from projects con-
cerning the study of mechanisms of translational control of gene expression. Namely, our interests
are in defining sets of homologous sequences from organisms related to humans in oder to predict
conserved regulatory regions that affect alternative splicing and translation inhibition by micro-
RNAs.

IMPLEMENTATION

The GeneHuggers object hierarchy
The development of programs with the previous ANSI-C version of GeneHuggers was becoming
cumbersome due to the separation of data types and functions inherent within the C language.
Through a thoughtful object design stage, we have developed a class hierarchy that extends the
GNU Object super-class. Since FASTA formatted sequences and flat files of annotations provided
by Entrez Gene or the NCBI mapping coordinate data sets are all contained in files, the GHFile ob-
ject is the super class to each of the relevant objects which handle any basic file Input/Output func-
tionality. Due to the simplicity of the FASTA format, a single sub-class of GHFile can be used to
handle any sequence file. Instances of GHFast can be used to read a single sequence or the entire
non-redundant blast database file. GHLine handles line-oriented text found in GenBank and Uni-
Gene formatted files and GHField handles character-delimited flat files such as Gene and Homolo-
gene as well as BLAST output reports. Together, these three objects have been able to handle pars-
ing of any flat file and sequence analysis output report we have encountered.

Embedded FireBird SQL database engine
The desire to parse all available annotation files is worthless without a method for storing and sub-
sequently accessing the information. We have chosen the FireBird SQL engine as the core database
system and have embedded its API within the GeneHuggers framework. A single GHBase object
has been created with performs all base (low level) database operations. The companion GHSock
object handles SQL transactions and statements. Together these two objects represent an Objective-
C API for FireBird. The object methods handle all arguments to the FireBird functions and perform

the required error checking/reporting steps. In addition to the core function wrappers, there are wide
ranges of methods available to perform tasks ranging from database and table creation to insert, up-
date and select statement processing.

Bioinformaitic application wrapping with GHObjects
With access to sequences and annotations in hand, one presumably then desires to perform some
form of work. We have found great utility in wrapping each application inside a object so that pa-
rameters and allocations required by the algorithm can be sequestered away from the main applica-
tion. Inside each algorithm’s object, a method is used to place sequences into temporary files and
execute a system() call to perform the operation. Another method parses the resulting report file into
its component data and then various methods can be employed to filter these results or retrieve re-
sults back into the main application. Most of the application report parsing methods can make use
of the GHLine or GHField objects in order to facilitate the process of extracting information from
the textual report format.

Homologous genome annotation and translational regulation
The biggest hurdle for our own research projects has been obtaining reliable sets of homologous ge-
nomic regions for genes of interest. These problems stem from multiple factors including deficien-
cies in annotations to variations in annotated alternative spliced transcripts and missing untranslated
regions. Thus, depending upon the gene, we have had to perform one or more of the following tasks
in order to obtain human, mouse and rat 3’UTR sequences for miRNA analyses.

• protein/protein blast to obtain homologous member genes from each organisms
• protein/nucleotide blast to obtain longest cDNA sequences for each protein
• nucleotide/nucleotide blast to obtain genomic neighborhood of transcript
• spidey alignment of transcript and genomic region to discern exon/intron structure
• selection of longest 3’UTR sequence from the set and subsequent spidey or sim4 alignment

of that region with the relevant genomic regions of the organisms lacking annotations in the
3’UTR

Each of these processes makes use of local GeneHuggers managed databases created and mined
with GeneHuggers developed applications. All regions corresponding to newly annotated 3’UTRs
are dropped into a flat file FASTA database file which is subsequently parsed and integrated into
the GeneHuggers framework. Then specific algorithms that find polyadenylation signals or miRNA
interaction sites are run on this database and these results are further filtered based on conservation
between organisms.

REMARKS

We have a complex network of interactions in place within the bioinformatics section of our labora-
tory. While our primary goal is to provide leads for biological research, we have also a strong desire
to develop novel software tools. Tantamount to this development process is the desire to never write
the same code twice. This approach has led us to the use of object-oriented programing as a means
to simplify the maintenance and development of our core function libraries. The choice to integrate
SQL into the GeneHuggers framework stems from the availability of an unencumbered open source
SQL engine such as that offered by the Firebird project. With the basic objects described in this ex-
tended abstract, we have vastly improved the efficiency by which programs are developed. Most ev-
ery method contained with the objects have found uses in multiple different programs. Of course
GeneHuggers, like the resources it depends upon, is a rapidly moving target. Thus it will be of
paramount interest to us to see what changes are required as the software is utilized by other re-
searchers with other specific aims.

