Lessons Learned Integrating Open Source
Software in a Commercial Life Sciences Workflow
Product

Scott Markel, Ph.D.
Principal Bioinformatics Architect
SciTegic
smarkel@scitegic.com

Bioinformatics is blessed with many open source tools that address the needs of our
community. There are also de facto standards like NCBI’s GenBank file format and
BLAST program. And, of course, our customers expect access to all of these.

So what happens when a commercial life sciences workflow product makes heavy use of
open source and publicly available programs?

Customers expect our product to be stable and professional quality, even when the third
party tools we use aren’t. There are times when we need to correct a bug in our version
immediately and then change our fix if the third party tool is modified differently by the
community. Our regression tests are helpful when upgrading an open source program.
Due to the high throughput nature of workflow products, these applications are good at
finding exceptional cases. We’ve been able to provide feedback and test cases for the
tools we use, and, if we can, we propose a fix.

Our product has the requirement to run on both Windows and Linux, so there are the
expected operating system issues. Many third party programs have a distinct Unix bias.
This can make implementation on Windows a challenge. For example, the program_list
function from Bio::Factory::EMBOSS exits if the operating system is either Windows or
Macintosh. Command line invocation of programs through Perl can also be a challenge.
There are multiple ways to invoke programs from Perl: system(), backticks, pipes,
Win32::Process::Create. All can have different behavior on Windows. Thankfully,
Cygwin libraries can help by allowing Unix-like executables to run in a Windows
environment.

The open source communities have been especially helpful during our development
efforts. The open source advantages are well-known, including mailing lists that provide
quick answers and software that has been tested. Of course, to be fair the latter usually
means that common things have been tested by many people, while uncommon things
may not have been tested much at all. Sometimes the community is very small, e.g.,
André Blavier and EMBOSSwin.

Other issues that must be dealt with include how to present command line options and
error messages to users. Programs can have cryptic parameter values, e.g., genetic code
numbers that need to be replaced with meaningful text. Some programs like Primer3

have large numbers of parameters. We split these into basic and advanced sets so that
novice users aren’t overwhelmed with detail. Our users expect error messages to be
meaningful, allowing them to understand what went wrong and what to do about it. If a
third party tool merely provides a stack trace, we may have to replace or augment it to
make our software more user friendly.

Of course, every development effort has irritating little things to deal with. Examples of
ours include the following.

e HMMER's hmmalign reformats NCBI's standard FASTA ID format. gi|460966|
gblAAA18225.1 becomes gi 460966 gb AAA18225 1

e ctrl-A characters in NCBI's nonredundant database are illegal chars in any XML
encoding.

e Swiss-Prot entry P03393 has the gene name "ENV". This wreaks havoc since the
string gets used as a hash name.

e Fuzzy locations in GenBank entries. They’re rarely used, but need to be correct
when they arise.

We’re strong believers in open source and publicly available tools and see the necessity
of integrating them into a commercial product. Our community thrives on them,
distinguishing us from other communities that rely more heavily on proprietary software,
e.g., cheminformatics.

