Semantics in data integration processes

Guido Vetere, Research Director
IBM Center for Advanced Studies of Rome

NETTAB 2005
Napoli, October 4-7 2005
Summary and motivation

- A huge amount of biological information and many bioinformatic systems are available over the Internet.
- Making both data and systems interoperable in coordinated workflows would unleash new scientific capabilities.
- Biological information is dealt by means of “heterogeneous data structures and information systems and, often, even a different semantics” (Paolo Romano).
- Web Services are able to neutralize differences in platforms and data structures, but are noncommittal about semantics.
- This lecture is about WS semantic integration, with some specific reference to Bioinformatics.
Interoperability

- Interoperability is when autonomous systems can exchange data and activate functionalities transparently, reliably, and securely across a network.
- Web Services standards provide today a solid and widely accepted platform for system interoperability.
- Complex Life Science computations, data services, and workflows could better leverage distributed architectures, if basic functionalities were exposed through Web Services.
Examples: Life Sciences WS at IBM’s alphaWorks

- **GenBank**: queries a Web database at the National Center for Biotechnology Information (NCBI) Web site and returns the nucleotide sequence for each accession number submitted.

- **BLAST (Basic Local Alignment Search Tool)**: conducts a sequence alignment analysis for each input sequence at NCBI

- **ClustalW**: runs a fully automatic program at the European Bioinformatics Institute (EBI) for global multiple alignment of DNA and protein sequences
From Interoperability to Integration

- Integration is when a set of interoperable systems are coordinated to act as they were a single one
- Moving from Interoperability to Integration requires harmonizing data and processes semantics
- However, in their basic form, Web Services are neutral w.r.t. semantics
- Industry and research are striving to provide WS infrastructures (and the Web in general) with a (sort of) ‘semantic layer’
Semantics

- In general, semantics is a mapping (aka ‘interpretation function’) which involves:
 - Expressions: a system of manifested symbols (e.g. a formal language)
 - Contents: a system of something else which is not necessarily apparent (e.g. sets of objects or events in (some abstraction of) the ‘Real World’)

- Web Services ‘semantics’ aims at filling the gap between:
 - Expressions: the description of operations and data items (WSDL, XML)
 - Contents: the (interpretation of) some shared conceptualization

- A number of WSDL extensions (e.g. WSDL-S), along with rich XML-based schema modeling languages (e.g. XSD, XMI, RDFS, OWL) are available to implement WS semantic extensions
Semantic issues

- Unfortunately, in its generality, semantic integration is essentially a non-technical issue: the notion of ‘sharing a conceptualization’ (i.e. an ‘ontology’) involves deep and controversial philosophical aspects.

- Working out broad ontologies requires extensive and complex analyses and many discretion and debatable choices.

- Adopting available ontologies involves (costly) social & technical adaptations.

- Fortunately, Life Science WS can benefit of a vast array of ontologies (e.g. Open Biomedical Ontologies, Gene, etc) mostly based on well-understood *natural kinds* and *processes*.
Example: Gene Ontology (OWL, Protégé)
Semantics in services infrastructures

- Since the adoption of shared ontologies is a long and complex process, biologists will probably have to handle “heterogeneous data structures and [...] different semantics” for many years.

- This requires semantic integration to resort on conceptual mappings that make different data/process descriptions equivalent, either pair-wise or with respect to some (partial) unifying ontology.
Conceptual mappings

- **Abstractly, a conceptual mapping is a formula**
 \[\forall x \exists y \Phi(x,y) \rightarrow \exists z \Psi(x,z) \]
 - \(x, y, \) and \(z \) are variable vectors
 - \(\Phi \) and \(\Psi \) are conjunctive formulas of predicate symbols belonging to different alphabets (ontologies)
 - \(\rightarrow \) is a logic implication connective (e.g. FOL material implication)

- **Concretely, mappings can be:**
 - any kind of XML transformation rule (e.g. XSLT)
 - specific assertions of ontology languages (e.g. OWL’s \texttt{sameClassOf})
 - Named views in database federations
 - ...
Four models for semantic integration

- **Depending on whether**
 - conceptual mappings are drawn toward a single unifying ontology (model) or not
 - their evaluation is distributed or centralized

we have the following four basic models for semantic interoperability:
- unmodeled-decentralized
- unmodeled-centralized
- modeled-decentralized
- modeled-centralized

Unmodeled-decentralized

The integration logic is distributed, and there are not shared ontologies

- ‘Pure’ Peer-to-Peer systems, the Web ‘as is’,
- P2P information integration systems, ‘emergent semantics’
Unmodeled-centralized

The integration logic is contained in a single system, without an explicit unifying ontology

- Choreographies, *ad hoc* Data Grid applications (‘analysts’), …
- BPEL, OGSA-DAI, …
Modeled-decentralized semantic integration

The integration logic is distributed by any service implementation, based on a shared ontology

- ‘Semantic Web’ approach
- Model-Driven Web Services à la WS Modeling Framework, Semantic Overlay Networks, Semantic Grid, etc
Modeled-centralized semantic integration

The integration logic is contained in a single system, based on a unifying ontology

- Classic database federation and ‘semantic’ data grids
- Industry application integration infrastructures based on ‘business models’
Discussion

- Despite many open ‘philosophical’ issues, ontologies allow (but not ensure) semantic integration, whatever it could be in practice.

- However, there are many cases in which organizational, cultural, or infrastructural constraints hinder or even disallow the adoption of such semantic artifacts.

- In Bioinformatics, the availability of stable natural taxonomies, definitions, theories, etc. is certainly an excellent starting point for modeling ontologies – and in fact there are many.

- In their maturity, these standards could enable semantic integration through Web Services in both centralized and decentralized infrastructures.
Conclusion

- The availability of mature semantic standards emerges as an important requisite for the development of distributed workflows in Bioinformatics
- Creating Bio-ontologies and/or experimenting them in concrete data and process integration is a (non-trivial) work in progress, that involves both theoretical and practical aspects
- Assessing / improving the quality of Bio-ontologies is a priority
- Application to Bio-ontologies of specific development methodologies (e.g. Guarino&Welty’s OntoClean) and basic ontological distinctions (e.g. CNR’s DOLCE) deserves a deep investigation in the coming years
Questions?

CAS Centers: http://www.ibm.com/ibm/cas
Annual conference: http://www.ibm.com/ibm/cas/cascon