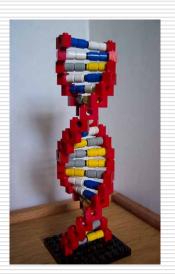
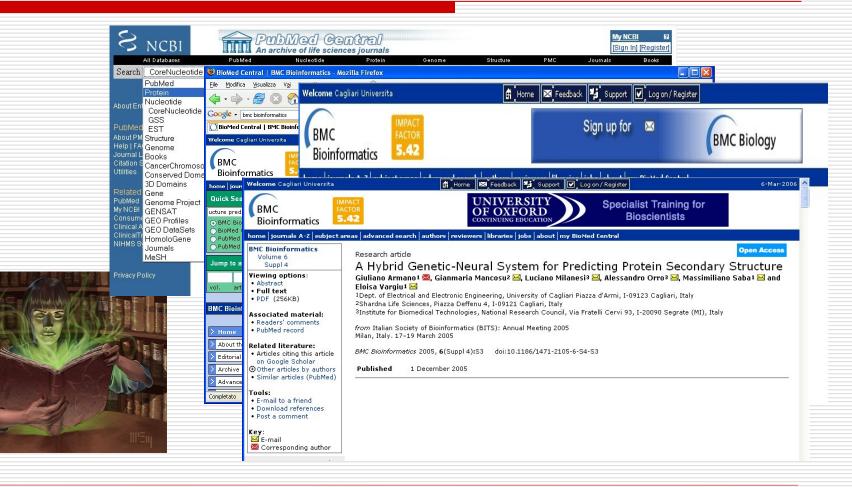
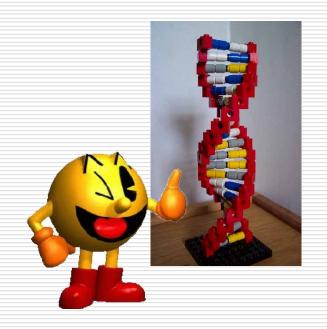
A MultiAgent System for Retrieving Bioinformatics Publications from Web Sources A. Addis, A. Manconi, M. Saba, and <u>E. Vargiu</u>


Intelligent Agents and Soft-Computing Group DIEE – University of Cagliari (Italy)

Outline

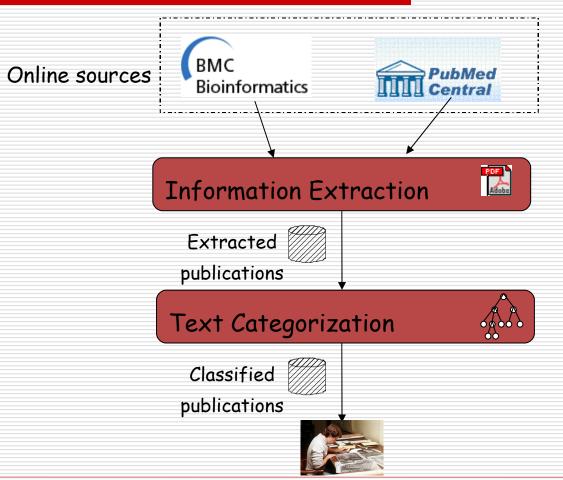

- Introduction
- The Proposed MAS
- Experimental Results
- Conclusions and Future Work

Motivations



Motivations

- Support the user through an automated system, able to:
 - Retrieve and extract information from heterogeneous sources
 - Select the contents really deemed relevant for the user, according to her/his personal interests

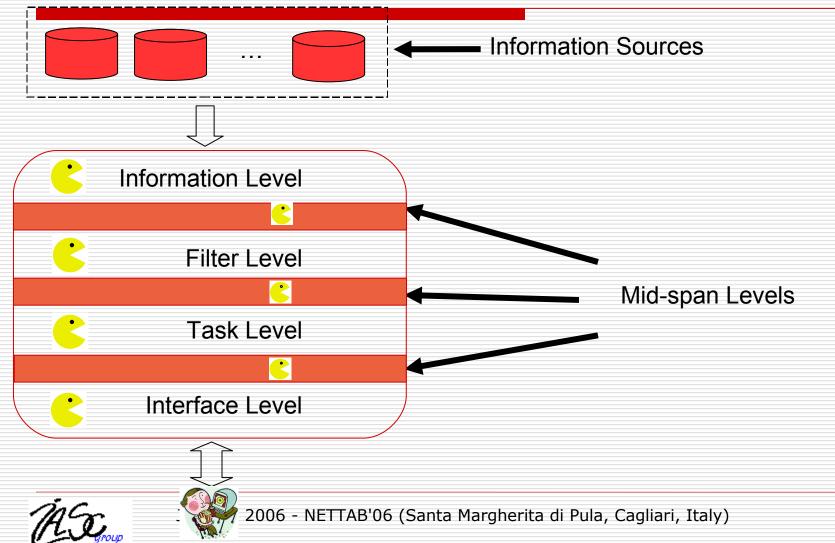


The Proposed MAS

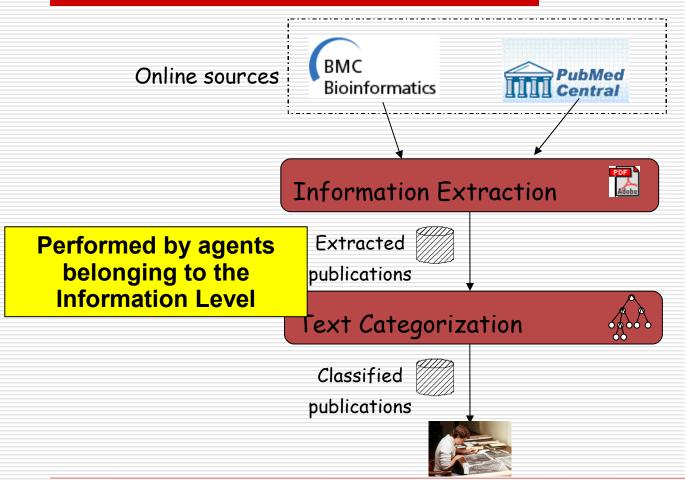
Retrieving Bioinformatics Publications: main activities

The Proposed Approach

- A multiagent system able to:
 - take into account user's needs and preferences (Personalization)
 - adapt to changes occurring in the environment (Adaptation)
 - *interact* with other agents and the user (Cooperation)



Implementation: The PACMAS Architecture


- A multiagent architecture designed to support the development of applications aimed at:
 - Retrieving heterogeneous data spread among different sources
 - Filtering and organizing them to personal interests explicitly stated by each user
 - Providing adaptation techniques to improve and refine user profile

Implementation: The PACMAS Architecture

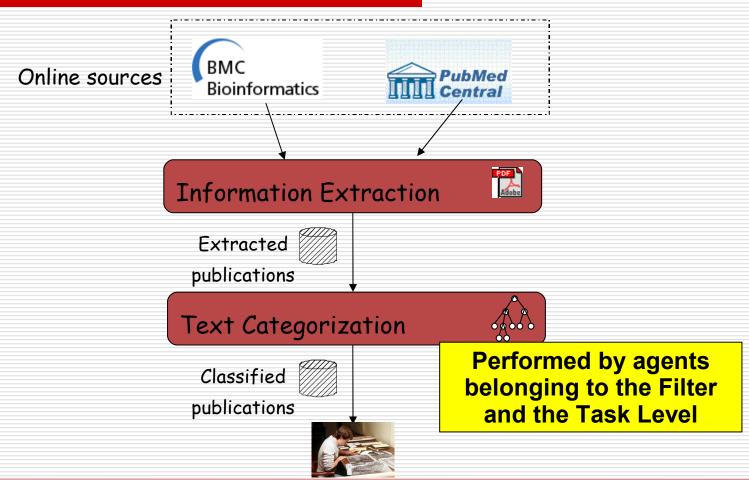
Retrieving Bioinformatics Publications: main activities

Information Extraction

- At the information level:
 - An agent wraps the BMC Bioinformatics site
 - An agent wraps the PMC web service
 - An agent wraps the adopted taxonomy

Information Extraction: BMC

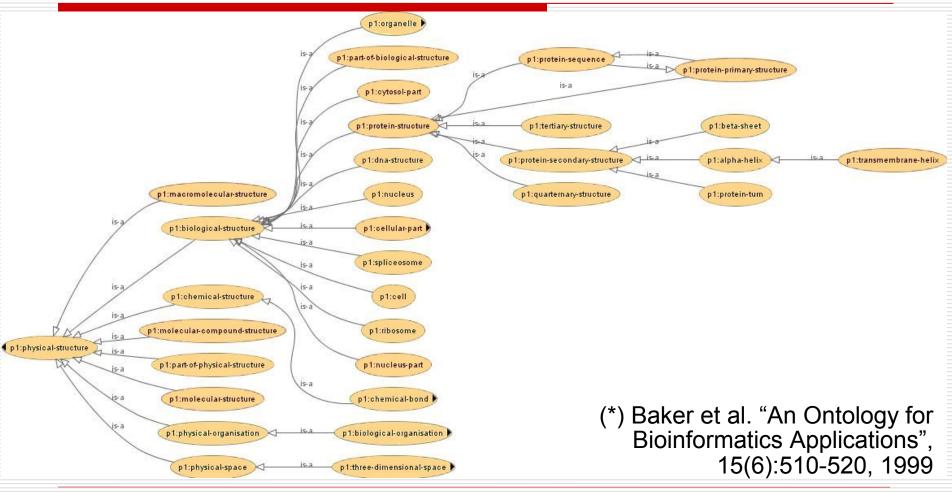
- RSS is a family of web feed formats providing web contents and other metadata
- An information agent is aimed at extracting information from a corresponding structured RSS source



Information Extraction: PMC

- WSIG is a JADE add-on providing support for bidirectional interactions between web services and JADE agents (and JADE agent services from web service clients)
- An information agent is aimed at interacting with a corresponding web service using WSIG

Retrieving Bioinformatics Publications: main activities



Text Categorization step by step

- I. Disregarding *stop words*
- II. Applying the *stemming algorithm*
- III. Creating the *bag of words*
- *IV.* Creating the vocabulary
- v. Applying a *feature selection* technique
- vi. Creating the *feature vector*
- *vII. Classifying* the resulting document according to a predefined *taxonomy*

Text Categorization: the adopted taxonomy

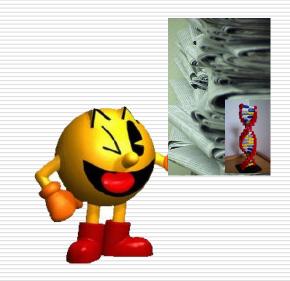
A.S.

Filter Agents

At the filter level, agents:

- remove all non-informative words by using a stop-word list
- remove the most common morphological and inflexional suffixes by using a stemming algorithm
- select the relevant features by using the information gain method
- generate for each document a feature vector

Task Agents


- At the task level, agents:
 - embody a wkNN classifier
 - are trained to recognize a specific class, each class being an item of the adopted taxonomy
 - measure the classification accuracy

Interface Agent(s)

🁙 Interface Agent - PC GUI				
File Edit Help				
DocsNumber 50 % Positiv	0 20 40 60 80 100			
Test				
biological-structure 💌	Refresh Start Test Test File			
biological-structure	Clear Test Text			
physical-space protein-structure				
bachTestWayl.tst	Start Batch!			
Training				
	N Features 90			
protein-structure	Do validation test			
START	Clear			
Command				
ON:TEST: AGGREGATION:TAXONOM	fY; CLASSES: KNN_molecularscara ▼ Start			
Status				
Information Level 50 Filter Level	Information Level 50% Extracting Filter Level Preprocessing			
Task Level	Ready.			
Interface Level	Ready.			
OOC Output				
Database: positive example e	extraction			

July 11, 200

- Several tests have been performed, aimed at highlighting –and getting information about– the validity of the approach
- We estimated the (normalized) confusion matrix for each classifier belonging to one of the two highest levels of the taxonomy

- Tests have been conducted using selected publications extracted from the BMC Bioinformatics site and the PubMed Central digital archive
- Publications have been classified by an expert of the domain according to the first two levels of the proposed taxonomy

- For each item of the first and second level of the taxonomy:
 - a set of about 80-100 articles has been selected to the training phase
 - a set of about 200-300 articles have been used to the test phase

Category	Accuracy	Precision	Recall
Macromolecular Structure	0,95	1	0,9
Biological Structure	0,86	0,92	0,79
Chemical Structure	0,9	0,97	0,83
Molecular Compound Structure	0,87	1	0,74
Part of Physical Structure	0,86	1	0,71
Molecular Structure	0,87	1	0,74
Physical Organisation	0,87	1	0,74
Physical Space	0,88	1	0,76

Conclusions and Future Work

Conclusions

- We presented a system aimed at
 - retrieving publications from bioinformatics sources
 - classifying them using suitable machine learning techniques
- The system has been built upon PACMAS, a support for implementing Personalized, Adaptive, and Cooperative MultiAgent Systems

Future Work

- To implement...
 - more sophisticated classification algorithms
 - automatic composition of categories
 - suitable feedback mechanisms

That's all folks!

