
New bioinformatics applications based on
Web Service Technologies and GRID Computing

Tiziana Castrignanò, CASPUR, Rome, Italy
tiziana.castrignano@caspur.it

Thursday, July 13,
(at POLARIS Science and Technology Park of Sardinia)

Bioinformatics

Bioinformatics is an emerging scientific discipline that uses information

technology to organize, analyze, and distribute biological information in

order to answer complex biological questions.

It involves the solution of complex biological problems using

computational tools and systems. It also includes the collection,

organization, storage and retrieval of biological information from

databases.

Web services

The Web services are a type of service that can be shared by and used as

components of distributed Web-based applications.

They uses a standardized XML messaging system, and they are not tied to

any one operating system or programming language.

Web services

There are several alternatives for XML messaging.

For example you could use XML Remote Procedure Calls (XML-RPC) or

SOAP or HTTP GET/POST passing arbitrary XML documents. Any of

this option can work.

XML-RPC

SOAP

HTTP POST/GET

XML document

XML messaging for web services

Web service definition

1. Web services are accessed over the Web.

2. Web services describe themselves using an XML-based description

language (WSDL).

3. Web services communicate with clients (both end-user applications or

other Web services) through XML messages that are transmitted by

standard Internet protocols, such as HTTP or FTP.

4. Web services are not “tied” to any operating system or programming

language (the communication beetwen client and server is based on XML)

Web service properities requested

1- self-describing

if you publish a new web service, you should also publish a public

interface to the service and a human-readable documentation, so that other

developers can more easily integrate your service

2- discoverable

there should be some simple mechanism for you to publish your new web

service, so that interested parties can find the service and locate its public

interface

Web service goal

For years developers have created CGI programs and Java servlets designed

primarily for use by other applications. Main limit of this technology was that

most of these systems consisted of ad hoc solutions!

Web browser

HTTP GET

HTTP response
with HTML pages

Web server

human-centric Web

Web service goal

With web-service we move from a human-centric Web to a conversation

that take place directly between applications.

With web services the promise of some standardization should hopefully

lower the barrier to application integration.

Inventory
application

XML request

XML response

On to human users

On to other applications

The Web Services Vision: The Automated Web

Current web service technology does take us one step closer to completely

automated web services and “just in time” application integration.

Service
registry

Inventory
application

Retrieve service description

Service description

Service application
Invoke remote service

1

2

3

Discover services

The Automated Web

Web service Architecture

Let now examine first the individual roles of each web service actor

(web service roles) and second the emerging web service protocol stack.

1- Service provider

The service provider implements the service and makes it available on the

internet.

2- Service requestor

The requestor is any user of the web sevice who utilizes an existing web

service by opening a network connection and sending an XML request.

Web service Roles

Web service Architecture: Web service Roles

3- Service registry

It is a logically centralized directory of services. The registry provides a central

place where developers can publish new services or find existing ones.

Service
provider

Service
registry

Service
requestor

Invoke service

1

2

Discover services
Web service roles

A centralized site for CASPUR bioinformatics web services is the site:
http://t.caspur.it/webservices/home.php

Web service Architecture

Web service Protocol Stack

The web service stack is still evolving, but currently has four main layers:

Web service protocol stack

1- Service transport

At this stage we simply have to transport messages between applications.

This could be done by any known protocol, HTTP, FTP or even SMTP.

2- XML Messaging

A layer resposible for encoding messages in a common XML format, so that

messages can be understood at either end. Usually the most used protocol

library for various languages (e.g. Php, C, Java) to achieve this translation is

SOAP.

Web service Architecture: Web service protocol stack

3- Service description

A layer necessary to describe the public interface to a specific web service.

Currently, service description is handled via the Web Service Description

Language (WSDL)

4- Service discovery

Finally we centalize services into a common registry, providing easy-find

functionality. Service discovery is possibly handled via UDDI (Universal

Description, Discovery and Integration)

Web service Architecture: Web service protocol stack

1- First, you must identify and discover thos services that are relevant to your

application.

Service Request Perspective

A typical development plan for a service requestor is:

2- Once you have identified the service you want, the next step is to locate a service

description.

3- You must create a client application. For example. You may create a SOAP client

in the language of your choice simple analysing the WSDL file.

4- Eventually, run your client application to invoke the web service.

Service Request Perspective

Step 1: Find services via UDDI

Step 2: Retrieve WSDL file

Step 3: Create XML-RPC or SOAP client

Step 4: Invoke remote service

The service requestor perspective

1- First, you must develop the core functionality of your service. This is usually

the hardest part, as, for eaxample, your application may connect to a database.

Service Provider Perspective

A typical development plan for a service provider is:

2- Second, you must develop a (XML_RPC or SOAP) service wrapper to your

core functionality. This is usually a simple step.

3- Next, you should provide a service description (WSDL file for SOAP or

human-readable instructions for XML-RPC).

4- You need to deploy the service: you could install or run a standalone server

or integrate it with an existing one.

5- Fifth, you need to publish the existence and specification of your new service

on a global UDDI directory or perhaps a specific UDDI directory of your istitution.

Service Provider Perspective

Step 1: Create core functionality

Step 2: Create a (SOAP) service wrapper

Step 3: Create WSDL service description

Step 4: Deploy service

The service provider perspective

Step 5: Register new service via UDDI

Why web service technology for Bioinformaticists ?

The online sources of biomedical data provide remarkable user interface,

each different to each other. This inconvenience is disastrous for the

bioinformaticists who tipically needs to aggregate data from many on-line

sources to create a data set for further analysis.

When this data reside on different servers, using different data formats and

access methods, the first step is to write a set of software ‘scripts’ to fetch

them, reformat them and place the extract into a local database.

Why web service technology for Bioinformaticists ?

This is not straightforward, because most online biological databases were

designed to be accessed by humans, not by machines.

Furthermore bioinformaticists often write scripts to parse HTML source

to extract the data ignoring graphics links and explanatory text.

Problems deriving from this are several:

• database manager always change user interface adding graphics and buttons

to improve user experience; each small chenge breaks dozens of scripts

• there is no documentation of what a data source’s web pages are supposed to

contain, so bioinformaticists must guess from few examples

• there is massive duplication of efforts

In order to facilitate universal access to bioinformatics data and analysis

software, Web sevices have much to offer (see the article by Licoln Stein Nature

2002, 417: 119-120).

Why web service technology for Bioinformaticists ?

http://www.nature.com/nature/links/020509/020509-2.html

•A number of online bioinformatic databases and services are currently

available (at EBI, DNA Data Bank of Japan, Virginia Bioinformatics Institute,

ecc.).

•Web services that are currently in place allow programmatic access to data.

•In a true Web services model, the data providers would register their services

in a formalized service registry, and researchers' scripts would no longer need to

be concerned with the interface details of the different databases.

Why web service technology for Bioinformaticists ?

This tutorial will guide attendees through the various components of creating Web

services.

Web service code examples will be shown in Java language, because it allows the

same program to be executed on multiple operating systems and it contains built-in

support for using computer networks.

SOAP is an XML-based protocol for exchanging information between computers.

It is an excellent technology in accessing resources from the web. This technology

is the most used solution in the interoperability of bioinformatics.

By using SOAP technology, you can connect the services from programs like Java,

Perl or others.

The development environment needs specific SOAP library such as Axis or

SOAP::Lite, ecc., according to the language in use (e.g. Axis for Java and

SOAP::Lite for Perl)

http://www.w3.org/TR/SOAP/
http://xml.apache.org/
http://xml.apache.org/
http://www.soaplite.com/
http://www.soaplite.com/

HOW TO BUILD UP YOUR OWN WEB SERVICE

We've chosen Java as our program language to develope Web Services.

Why Java?

• It uses the object-oriented programming methodology.

• It allows the same program to be executed on multiple operating systems.

• It contains built-in support for using computer-networks

• It is designed to execute code from remote sources securely.

• It should be easy to use and borrow the good parts of older object-oriented

languages like C++.

Installation of Packages

Axis is an implementation of the SOAP ("Simple Object Access Protocol")

submission to W3C and is an Open Source SOAP server and client. .

Tomcat is the Java Servlet container for Implementing Java servlets and

Java Server Pages.

By choosing Java, the most common framework to build a WS is

AXIS (together with the application server Apache Tomcat)

http://www.w3.org/TR/SOAP

1. Install Tomcat

You can get source from the Apache Web site

(http://jakarta.apache.org/tomcat/index.html) and

download the latest production version of the server

(currently 5.0.16)

Also you need to install JDK 1.3 or better (currently 1.5).

2. Start Tomcat

Several environmental variables need to be set to run Tomcat

CATALINA_HOME – set to top-level directory of the Tomcat installation

JAVA_HOME – set to top-level directory of the Java installation

After Apache Tomcat installation and starting you can test it by browsing

http://localhost:8080/

3. Install AXIS

The AXIS toolkit is distributed as a collection of jar files.

To install AXIS on your server, go to http://xml.apache.org/axis/index.html

and download the latest release.

AXIS most important features are:

• the implementation of SOAP 1.1/1.2

• supporting JWS (Java Web Services): gives an easy and instant deploy

of Web Services implementation of WSDL, the WS descriptor

• Soap Monitor and TCP Monitor, two application written in Java to monitor

SOAP net traffic

The class WebService used @ Caspur

The class WebService was built in order to manage the return type of any

webservice response.

The main idea is that each webservice must extend the class WebService

and use its inherited functions to return data to the client.

It is implemented in Java as an Object array and will be shown soon.

A first WebService: a simple “hello service” class example

public class HelloService extends WebService {

public Object[] hello(String user) {
if (user.equals(""))

return failedCall(null,"Error: empty input");
String results = "Hello " + user +" !!!";
return rightCall(results);

}

}

To create our WebService we save a new file HelloService.jws.

The name of the file must be the same of the public class defined.

public class HelloService extends WebService {..}

In our (Caspur) implementation every Web Service “extends” the WebService

Class previously defined from us.

This means that our web service HelloService.jws will inherit some useful

functions, such as:

-rightCall. This is the function that build the array of results in case of a

successfull call on our methods of the WS.

- failedCall. A function to return an array that gives messages about the

error that happened in case of a failed request

To call a specific service (method) of a WS the implementation of the
Java, the method must be signed as public.

In the previous example we have only one method (hello):

public Object[] hello(String user)

The key word public means that it will be accessible from outside connections.

Object[] means that either in both cases of a failed or successfull request, this
method will return an Object array.

The input of this function is expected to be a String that will be used inside
with the name “user”.

if (user.equals(""))

return failedCall(null,"Error: empty input");

In this example, in case that the input string of a request is empty,

we force the WS to return an error message with a failedCall

String results = "Hello " + user +" !!!";

return rightCall(results);

Otherwise, we return a rightCall with a hello message!

The main array contains two arrays:

The first one (position zero) describe the status as an integer:

0 - if the request is successfull

1 – if the request has failed somewhere

The error message, in case of a fail, is inside the same first array.

The second one (position one) contains the data from the Web Service in case

of a successfull request.

This is the main idea of the data structure in return from

a web service built extending our WebService class

(0=OK, 1=Fail) (empty, Errore message)

Results: Array of objects

Array_status (two components array,
position 0)

0=ok; empty

1=fail; error message

Array_result (array of objects, position 1)

position 0

position 1

For each WS which extends the Web Service class:

If the operation requested was completed succesfully the webservice

returns rightCall(data);

instead if any kind of problem occurred during computation the webservice

returns failedCall(data).

In this way the client, by checking the status of webservice answer,

will be aware of the reliability of data returned.

This class is particularly useful when you are interested in error managing.

Such problem is a foundamental task when developers work on a distributed

Grid.

Example of a call of the method “hello” with input user = “Paolo”

The array returned is:

Array
(

[0] => Array
(

[0] => 0
[1] =>

)
[1] => Array

(
[0] => Hello Paolo !!!

)
)

Example of a call of the method “hello” with input user = “”

The array returned the error as espected:

Array
(

[0] => Array
(

[0] => 1
[1] => Error: empty input

)

The WSDL is the file descriptor of a Web Service compiled with no errors:

The head WSDL of our HelloService would be:

<wsdl:definitions targetNamespace="http://t.caspur.it:8080/axis/webservices/HelloService.jws">

<!-- WSDL created by Apache Axis version: 1.2.1 -->

The XML is a tag-language. Every tag embed different informations.

In the WSDL “definition” field we found the correct address of the WS.

<wsdl:message name="helloRequest">
<wsdl:part name="user" type="xsd:string"/>
</wsdl:message>

this part of the WSDL specify the existence of a method “hello”

where the request takes as input “user” a string type

<wsdl:message name="helloResponse">
<wsdl:part name="helloReturn" type="impl:ArrayOf_xsd_anyType"/>
</wsdl:message>

then the response type will return an array of “any type”, an object array

the usage of a BLAST code

public Object[] blast2sequences(String seq1, String seq2){
try{
String command_type=null;
String com_type=null;
command_type=commandType(seq1, "first sequence");
com_type=commandType(seq2, "second sequence");
if (!comparate(seq1,seq2))

return failedCall(null,"Error: two sequences are different");
String path = createFileSeq(seq1);
String path2 = createFileSeq(seq2);
String com = bl2seq_start+command_type+input+path+second_input+path2;
return rightCall(exec(com));

}catch (Exception e) {return failedCall(null, e.getMessage());}

}

EXAMPLE of a bioinformatic WS:

public Object[] blast2sequences(String seq1, String seq2){

Here we define a method that will BLAST two sequences.

The BLAST is an NCBI tool that finds regions of local similarity between
sequences.

The input of this public function then will be two sequences of nucleotides

or proteic atoms , seq1 and seq2.

command_type=commandType(seq1, "first sequence");

com_type=commandType(seq2, "second sequence");

if (!comparate(seq1,seq2))

return failedCall(null,"Error: two sequences are different");

This part get use predefined private functions such as “commandType”

and “comparate”.

The idea is that we need to be sure that the two sequences submitted in

the request must be of the same biological type (nucleotides or proteine).

So if the comparation fails we send a messagge error.

String path = createFileSeq(seq1);

String path2 = createFileSeq(seq2);

String com = bl2seq_start+command_type+input+path+second_input+path2;

return rightCall(exec(com));

The BLAST tool needs data files to operate.

From the two string in input we create two files (with a private function).

Then we write the entire shell command that should usually launch

BLAST from a linux command line.

Executing the command we send the string obtained as result.

Creating dynamic Clients of a Web Service using PHP.

In order to build a php client for webservices, it must be first installed
the soap library for php.

Them following useWS is the function that embeds steps to communicate
with a webservice:

function useWS ($wsdl, $method, $params) {

$customer = new SoapClient($wsdl);
try {

if (!is_array($temp = $customer->_soapCall($method, $params))) {
display($temp);
return false;

}

//check status

if ($temp[0][0] == "0") return $temp[1];
else {

print "
WS Error:

";
display($temp[0][1]); exit;

}
} catch (Exception $e) {

die(""Web Services may be down, try again later");
}

}

$wsdl is the variable containing the webservice's address

$method contains the name of the method

$params is the array of input parameters' names and their types

The following code use this function to perform a Web Service request:

$wsdl = "http://t.caspur.it:8080/axis/webservices/GeneExtract.jws?wsdl";
//define the address of our WebService

$method = "findGene";
//define the method to be called on that WS

$organism = “human";

$gene = “gata1";

$params = array("org"=>"$organism","gene"=>"$gene");
//build an array with paramateres related

$results = useWS($wsdl, $method, $params);
//Web Service call

http://t.caspur.it:8080/axis/webservices/GeneExtract.jws?wsdl

If everything works, we would get for example:

Array
(

[0] => 48401210
[1] => 48408964
[2] => f
[3] => X

)

Those results are the coordinates of the chromosomal range of gene “gata1”

Possible error generated on our request, if Gene specified could not be found
($gene = “tiziana";) $results would be:
Array
(

[0] => Array
(

[0] => 1
[1] => Gene not found

)
)

Castrignanò T (1), D’Onorio De Meo P(1),
Carrabino D (1), Orsini M (2), Floris M (2)

and Tramontano A (3,4)

(1) CASPUR, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Universita`
e Ricerca, Roma
(2) Center for Advanced Studies, Research and Development in Sardinia
(CRS4), Bioinformatics Unit, PULA (CA)
(3) Department of Biochemical Sciences, University ‘La Sapienza’, Roma
(4) Istituto Pasteur—Fondazione Cenci Bolognetti, University ‘La Sapienza’, Roma

Availability: http://www.caspur.it/meps

Nettab 2006

Nettab 2006

One of the most interesting problems in molecular immunology is epitope

mapping, i.e. the identification of the regions of interaction between an antigen

and an antibody.

The solution to this problem, even if approximate, would help in designing

experiments to precisely map the residues involved in the interaction and could

be instrumental both in designing peptides able to mimic the interacting surface

of the antigen and in understanding where immunologically important regions

are located in its three-dimensional structure.

Nettab 2006

We have developed a method able to find the surface region of a protein that can

be effectively mimicked by a peptide, given the structure of the protein and the

maximum number of side chains deemed to be required for recognition.

The method is implemented as a publicly available server.

It can also list all peptide sequences that can mimic the surface of a given

protein and store them in a database.

MEPS server, available at http://www.caspur.it/meps

http://www.caspur.it/meps

Nettab 2006

We define here a surface ensemble as the collection of all peptides of a given

length L that can position their side chains in such a way that at least m

(1<m<L) of their side chains are able to mimic exposed regions of the protein

surface.

Given the structure of a target protein, we first select all solvent exposed

amino acids. In the current implementation the threshold for minimum solvent

accessible surface is set to 40 Å2.

Next, we compute the distance between the Cβ (Cα for glycines) of each pair

of exposed amino acids and store them in a matrix.

Web services implementation

Nettab 2006

The matrix is used to build a graph where each node represents a surface

amino acid, and an edge connects two nodes if their distance is lower than a

maximum distance threshold d.

The graph is represented as a collection of adjacency lists: there is a list for

each amino acid and each list contains a pair [neighbour, neigh_distance] if

neigh_distance is lower than d.

Nettab 2006

Why Grid Computing for bioinformatics?

The explosive growth of the biological data, stimulated by genome projects,

has generated a parallel development of efficient computational approaches

suitable for several biological research projects. In this area the need of High

Performance Computing (HPC) is growing, though usually not affordable

by computational resources of a single research laboratory.

Grid computing addresses this problem by coordinating and unifying several

computational resources, allowing the evaluation and mining of large amount

of data in the terabyte and petabyte range.

Nettab 2006

Why Grid Computing for bioinformatics?

Unfortunately, present-day versions of Grid middleware provide only a small

part of the functionality required from bioinformatics community.

On the other hand, web services are the distributed computing technology that

offers powerful capabilities for scalable interoperation of heterogeneous software

across a wide variety of networked platforms.

To increase individual and collective scientific productivity by making

powerful information tools available to everyone, a service-oriented

strategy is necessary.

Nettab 2006

Why Grid Computing for bioinformatics?

New projects on service-oriented grids have the assets of both grid and

web service technology and help researchers to obtain high performance

web services .

Complex applications exchanging huge amount of data, using several web

services, have to be managed to gain high performance and high avalability

systems, encouraging convergence of grid and web services.

Nettab 2006

A High Performance Grid Web Service framework for the
identification of "Conserved Sequence Tags".

Paolo D’Onorio De Meo(1), Danilo Carrabino(1), Nico Sanna(1),
Tiziana Castrignano`(1), Giorgio Grillo(2), Flavio Licciulli(2), Sabino Liuni(2),
Matteo Re(3), Flavio Mignone(3), Graziano Pesole(2,3,*).

1) CASPUR: Supercomputing Center for University and Research,
Via dei Tizii, 6/b - 00185 Rome Italy,

2) Istituto Tecnologie Biomediche - Sezione di Bari, C.N.R., Bari, Italy,
3) University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie,

via Celoria 26, Milan 20133, Italy

* present address: Dipartimento di Biochimica e Biologia Molecolare “E. Quagliariello”,
Università di Bari, Italy

Nettab 2006

Among service-oriented grid applications, to face the problem of

identifying and assessing the coding or noncoding nature of

conserved sequence tags (CSTs) through cross-species genome

comparisons, we present a grid-web service framework,

CSTgrid, whose core is implemented as web services.

It is composed by one grid daemon module and by seven web services,

three for grid components and four for resource components.

CSTgrid web tool, available at www.caspur.it/CSTgrid.

Grid Computing

http://www.caspur.it/CSTgrid

The annotation of sequence features in genome tracts is a fundamental

task in genome analisys. Although the complete genomes of several

eukaryotic organisms have been sequenced, we are not yet able to detect

their complete gene inventory, including their regulatory elements.

The identification and assessment of coding or noncoding nature of

conserved sequence tags (CSTs) through cross-species genome comparisons

may contribute significantly to functional annotation of whole genome

sequences with the discover of novel genes or gene expression isoforms.

Grid Computing: the scientific problem

The computation of a coding potential score (CPS) for each CST

identified in a pairwise genome comparison has been introduced,

that provides a reliable classification of CSTs in coding (high CPS)

and non-coding (low CPS), these latter being candidates of some

regulatory activity.

Grid Computing: the scientific problem

CSTgrid has been developed as an Open Grid Service Architecture,

in which services act as building block of the Grid system, allowing

biology community to use all services without any knowledge of the

underlying infrastructure.

Nettab 2006

It can provide high performance, high availability and can fairly handle

hundreds of concurrent requests.

The grid infrastructure has an ad hoc library, implemented as a set of

web services, developed meanwhile the grid community is working on a

standard toolkit for service-oriented grid.

Grid Computing

Furthermore our grid web service prototype built to minimize the overhead

of standard grid toolkit (e.g. Globus toolkit), is based on grid source

components developed compliant to Gtk standards, thus permitting an easy

migration path to future grid service-oriented standards.

Nettab 2006

Nettab 2006
Grid Computing

A set of four web services (Gene info, Features, Seq_ret, CSTfinder) has been

developed allowing the user to perform a CST search in four different ways:

(i) pasting the sequences (in FASTA format),

(ii) uploading a text file containing one query sequence and one target sequence,

(iii) submitting the Ensembl gene ID and selecting the corresponding organism and

(iv) selecting the organism and choosing the chromosomal range.

The first two selection cases involve the use CSTfinder WS only whereas the
last two involve the other three WSs needed to compose the CTSminer output.

Nettab 2006
Grid Computing

In the table we list each of four WS with a short description and the input and

output streams. Resources
WS

Description Input Output

GeneInfo Gives
information
about a gene
(chromosom
e number,
coordinates,
strand).

An ENSEMBL
identifier.

A chromosome
name, a
chromosomal range,
a strand.

Features Gives a list
of annotated
features in a
chromosoma
l range.

An organism, a
chromosome name, a
chromosomal range.

A list of features.

SeqRet Extract DNA
sequence
from a
chromosoma
l range of an
organism.

An organism, a
chromosome name, a
chromosomal range, a
strand, a mask option.

A DNA sequence.

CSTfinder Performs the
search of
CSTs
between two
DNA
sequences.

Two DNA sequences. A list of CSTs and
their associated
features (Coding
Potential Score,
Alignment, %
Identity, etc.).

Nettab 2006

Both Gene Info and Features WSs query liteDB, an home-made

database of features and genes annotated on genomes.

Gene Info takes a Ensembl gene name and queryies liteDB for the

chromosomic coordinates of the gene.

Features takes the chromosomic coordinate and queryes liteDB for

the list of annotated features. Data to populate liteDB tables are mainly

extracted from UCSC and Ensembl databases, but other sources can be used.

The advantage of using liteDB is that information taken from different

sources is parsed and stored with homogeneous structure. Moreover,

liteDB has been designed with a very simple structure so that direct

queries to the database can be performed avoiding the need for complex API.

Nettab 2006
Grid Computing

Seq_ret WS is based on a custom C program (written by F. Mignone)

designed to efficiently extract genomic sequences given the organism

name, the absolute genome coordinates and strand orientation (forward

or reverse) of the required region. It has been designed keeping

performance in mind; it is able to extract the selected region much

faster than similar programs such as extractseq from EMBOSS package.

Nettab 2006
Grid Computing

CSTfinder represents the core of the resources and essentially implements

the new version of the algorithm described in [1] with default parameters

i.e. word size of 7 and maximum E-value of 10-5 for Blast analysis and

minimum CST length of 60 nt. A couple of sequences is needed to run a job.

CSTfinder results are displayed by scanning each detected CST with the

highest-scoring triplet window (default minimum length of 60 nt).

This approach facilitates the detection of potential coding regions located

in longer CSTs which might contain both coding and non-coding tracts

(through the presence of untranslated mRNA or intronic regions).

[1] Castrignano T, Canali A, Grillo G, Liuni S, Mignone F, Pesole G. "CSTminer: a web tool for the

identification of coding and noncoding conserved sequence tags through cross-species genome comparison".

Nucleic Acids Research, 2004, vol.32 (Web Server issue):W624-7.

Nettab 2006

The resources worklow

Nettab 2006

The software architecture of CSTgrid

The system is developed in a multi-layered components to allow a

Rapid Application Development (RAD) infrastructure and minimal

administration efforts. CSTgrid is logically composed by three tiers (figure 1):

i) An interface tier responsible for communicating with end-user agents such

as web browsers and command line clients.

ii) A generic (not oriented to search CSTs) grid tier composed by a grid daemon

responsible for the management of the grid resources.

iii) A resource tier composed by a set of Resources WS, specific to search CSTs.

Nettab 2006

Nettab 2006

The interface tier

This tier is responsible for communicating with end-user agents such as web

browsers and command line clients. PHP scripts (GridStatus and CSTgrid),

running under Apache, allow the user both to obtain information about the

status of the grid and to launch a CST search job through a command line client.

More in detail CSTgrid script inserts new requests into and fetch results from

the CSTminer web service, the specific web service for managing jobs to search

CSTs. CSTminer performs continuously the following steps:

* receives a request from a client;

* obtains information about free resources from the ResourceAllocator web service

* uses several resources depending on the input request to perform CSTs search;

* sends CST results to the end-user agent.

Nettab 2006
Grid Computing

CSTminer is a public WS available to end-user developer through

the standard service description layer, Web Service Description

Language (WSDL), the XML grammar for specifying a public

interface for a web service. Using CSTminer WSDL the end-user

developer can locate the WS and invoke any of the publicy available

functions from his own home-made applications.

As any WS, CSTminer can let users to create new more complex

software that makes use of CSTs data through the standard web service.

Nettab 2006
The grid manager tier

The grid manager tier is based on four components: two web services

(GridInfo and ResourceAllocator), one database to store information

about the grid status and one grid daemon.

The database contains all the information about the hosts taking part to the grid,

the services available on that hosts and the history of the availability of these

services. The history data are managed by the grid daemon, a C program running

in background, which periodically queries their services to know the actual status

and stores this information into the database.

The detecting time interval for a given WS is calculated by the system and thus

configured and stored in the database.

Nettab 2006

GridInfo is a private web service responsible of giving access to

information about the grid status toward the external world via web.

GridInfo sends its data to two components:

i) the GridStatus PHP page;

ii) the ResourceAllocator web service for the managing of the resources.

The grid manager tier

ResourceAllocator is a web service responsible of taking resource requests

and providing access to them according to a load-balancing failure-safe policy.

It takes up-to-date information about the grid by the GridInfo web service.

Nettab 2006
The grid manager tier

For CSTgrid platform, in ResourceAllocator, we implemented,

as failure-safe policy, the Dynamic Weighted Round-Robin (DWRR) [2]

for load balancing. DWRR is a variant of WRR, in which the main merit

of the algorithm is to minimize the frequency of detection.

ResourceAllocator, calling the method to perform a DWRR, detects each host’s

load in the system at intervals and, following the detection of loads, a set of weights

(the inverse ratio of host loads) is given to each host.

The system allocates new jobs to each host according to the set of weights.

[2] Li D-C, Wu C., Chang F.M. Determination of the parameters in the dynamic weighted Round-Robin

method for network load balancing. Computers and Operation Research. 32 (2005) 2129-2145.

Nettab 2006

The grid enabled CSTminer

CSTminer is a web tool for the identification and characterization of

genome tracts which are highly conserved across species during evolution.

It is available at www.caspur.it/CSTminer.

Such a tool make use of local executables to perform CSTs search and

is dynamically interconnected to Ensembl genomes.

The system was adequate for few concurrent requests, but in case of multiple

concurrent requests the server performance dropped.

Furthermore, in case of a failure of some part of the distributed system,

the entire application was unable to give any output.

http://www.caspur.it/CSTminer

Nettab 2006
The grid enabled CSTminer

These facts gave us the idea to develop a grid version of the

software where each component of the system was replicated to gain

better performances in case of many concurrent requests and to manage

component failures.

In fact when an incoming search request is submitted according to the

input selection the ResourceAllocator web service assigns the corresponding

resources to different jobs depending on predefined policies.

The CSTminer WS performs the search using the Resources WS,

located on remote machines and replicated to obtain the fault-tolerant property.

Nettab 2006
Fault tolerance

In the event of a Resource WS failure, searches are simply rescheduled

on other available servers.

Queuing information are stored in the grid-status database possibly to preserve

the trace of failure jobs. The end-user agent is also able to show the route and the

history of each job.

The system also offers an interface to view the status of the grid showing a map

with the distributed resources that can be selected to control their state, history,

load, etc. The grid daemon is the managing component of failures.

Nettab 2006

Fault tolerance

It periodically queries servers and stores information about their

status in the database.

Therefore when the CSTgrid server asks for free resources the Resource Allocator

web service, through the information stored in the database, will exclude those

unavailable.

If suddenly a resource becomes unavailable while the CSTgrid server is using it,

the CSTgrid server notifies the failure to the grid daemon and requests a new resource.

Nettab 2006

Nettab 2006

Conclusion

CSTgrid architecture is highly modular allowing an easier development

and debugging process.

The system has been developed as a Service-Oriented Architecture based on a

collection of web services distributed over a geographical grid.

It deploys an interface layer, completely unaware of underneath grid-layer.

The system has been designed in a user-centric way providing two points of access:

the first one is for end-user to perform hight-performance CST serches;

the second one for the developer user to build new large scale WS applications.

	Bioinformatics �Bioinformatics is an emerging scientific discipline that uses information technology to organize, analyze, and
	Web services ��The Web services are a type of service that can be shared by and used as components of distributed Web-based ap
	Web services ��There are several alternatives for XML messaging. �For example you could use XML Remote Procedure Calls (XML-RP
	 �� Web service definition��1. Web services are accessed over the Web. ��2. Web services describe themselves using an XML-bas
	 Web service properities requested ��1- self-describing�if you publish a new web service, you should also publish a public i
	
	
	
	Web service Architecture�Let now examine first the individual roles of each web service actor �(web service roles) and second
	Web service Architecture: Web service Roles
	Web service Architecture
	Web service Architecture: Web service protocol stack
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Castrignanò T (1), D’Onorio De Meo P(1), �Carrabino D (1), Orsini M (2), Floris M (2) �and Tramontano A (3,4)
	We define here a surface ensemble as the collection of all peptides of a given length L that can position their side chains in
	The matrix is used to build a graph where each node represents a surface amino acid, and an edge connects two nodes if their d
	
	
	
	
	
	

