

TUTORIAL - 3B - HPC INFRASTRUCTURES
part 1

Claudio Arlandini: CILEA System Administration Group
Raffaele Ponzini: CILEA HPC Group

Index of the presentation
Perspectives and requirements of

bioinformatics in the Grid era
Flynn classification of architectures
Memory classification of architectures
Topology of interconnection networks
Technologies of interconnection networks
Architectures hosted by CILEA

Grand challenges in informatics
Top ten challenges for bioinformatics

Perspectives and requirements
in bioinformatics in the Grid era

Grand challenges in informatics

computational costs of about 106 – 1013 Gflops/s

105

104

103

102

101

1980 1990 2000

Gflops/s

Years

grand challenges

computational
chemistry

structural biology

desktop pc

Today’s top 500

11*10463*103‘0510240 ASC PurpleDOE/NNSA/L
LNL

3

11*10491*103‘0540960BlueGene/LIBM Thomas
J. Watson
Research
Center

2

36*10428*104‘05131072BlueGene/L DOE/NNSA/L
LNL

1

Rpeak(*)Rmax(*)YProc.ComputerSiteRank

[(*)Gflops/s]

Top ten challenges for bioinformatics
[1] Precise models of where and when transcription
 will occur in a genome (initiation and termination)

[2] Precise, predictive models of alternative RNA splicing

[3] Precise models of signal transduction pathways;
 ability to predict cellular responses to external stimuli

[4] Determining DNA-protein, RNA-protein, protein
 recognition codes

[5] Accurate ab initio protein structure prediction

Top ten challenges for bioinformatics
Source: Ewan Birney,
Chris Burge, Jim Fickett

Top ten challenges for bioinformatics[6] Rational design of small molecule inhibitors of proteins

[7] Mechanistic understanding of protein evolution

[8] Mechanistic understanding of speciation

[9] Development of effective gene ontologies:
 systematic ways to describe gene and protein function

[10] Education: development of bioinformatics curricula

Flynn classification of
architectures

• Flynn classification gives the taxonomy of HPC
architectures by means of the multiplicity of the
hardware used to manage the stream.

• In this way we can distinguish architectures as
follow:

3. SISD: Single Instruction Single Data Stream
4. SIMD: Single Instruction Multiple Data Stream
5. MISD: Multiple Instruction Single Data Stream
6. MIMD: Multiple Instruction Multiple Data Stream

SISD
Single Instruction stream over a Single Data stream

In this architecture configuration (wich correspond to the Von Neumann
machine schema, and actually to all the desktop PC that we use) a single
processor executes a single instruction stream. Data are stored in a single
memory.

CU MMPU
DSIS

IS
LEGENDA:

CU: Control Unit

PU: Processing Unit

IS: Instruction Stream

DS: Data Stream

MM: Main Memory

SIMD
Single Instruction stream over Multiple Data stream

In this architecture configuration a single processor executes a multiple
instruction stream. The parallel computational model is the so called
synchronous (in the sense that all the processors work in lock-step) and the
processor is in general referred as a vector or array processor.

CU MM2PU2

DS1

IS

PUn

PU1

MMn

MM1

DS2

DSn

LEGENDA:

CU: Control Unit

PU: Processing Unit

IS: Instruction Stream

DS: Data Stream

MM: Main Memory

• In order to take an advantage from such an
architecture the application should make the
same operation over a large number of data
points.

• In this architecture such an operation can be
done at once.

• This kind of instruction are called “vectorized”
because they threat the data set as they are
stored in vector.

Example
Multiply by 2 the value of the brightness in all the pixels of an

image:
FIG(i) = OLD(i)*2
==> LOAD OLD(i),MULT 2, STORE FIG(i)

LOAD
OLD(1)

LOAD
OLD(2)

LOAD
OLD(n)

MULT 2 MULT 2 MULT 2

STORE
FIG(n)

STORE
FIG(2)

STORE
FIG(1)

PROCESSORS

TIME

Vectorial machines
• Cray C90, Cray T90

[http://www.cray-cyber.org/systems/c90.php]
[http://www.top500.org/orsc/1998/crayv.html]

• Nec SX-6
[http://www.sw.nec.co.jp/hpc/sx-e/sx6/specification_e.html]

• APE 1000, APE NEXT
[http://www.eurotech.com/IT/innovazione.aspx?pg=apenext]

http://www.cray-cyber.org/systems/c90.php
http://www.cray-cyber.org/systems/c90.php
http://www.cray-cyber.org/systems/c90.php
http://www.top500.org/orsc/1998/crayv.html
http://www.top500.org/orsc/1998/crayv.html
http://www.top500.org/orsc/1998/crayv.html
http://www.top500.org/orsc/1998/crayv.html
http://www.top500.org/orsc/1998/crayv.html
http://www.sw.nec.co.jp/hpc/sx-e/sx6/specification_e.html
http://www.sw.nec.co.jp/hpc/sx-e/sx6/specification_e.html
http://www.sw.nec.co.jp/hpc/sx-e/sx6/specification_e.html
http://www.sw.nec.co.jp/hpc/sx-e/sx6/specification_e.html
http://www.sw.nec.co.jp/hpc/sx-e/sx6/specification_e.html
http://www.eurotech.com/IT/innovazione.aspx?pg=apenext
http://www.eurotech.com/IT/innovazione.aspx?pg=apenext
http://www.eurotech.com/IT/innovazione.aspx?pg=apenext
http://www.eurotech.com/IT/innovazione.aspx?pg=apenext
http://www.eurotech.com/IT/innovazione.aspx?pg=apenext

MISD
Multiple Instruction stream over Single Data stream

In this architecture configuration many processors performs different
operations on the same data. This parallel computational model is not very
diffuse and only few implementations exists.

Practical applications that can take advantage from this architecture are
redundant systems where several backup systems are needed in case one
fails.

Memory
(program
and data)

CU2

PU2

IS

PUnPU1

CUnCU1

DS

LEGENDA:

CU: Control Unit

PU: Processing Unit

IS: Instruction
Stream

DS: Data Stream

MM: Main Memory

I/O: Input Output

IS IS

DS DS

I/O

IS

MIMD
Multiple Instruction stream over Multiple Data stream

In this architecture configuration different processors performs different
operations on the shared or different data. This parallel computational model
can be interpreted as an evolution of the SISD model.

The MIMD model can be divided in other sub-categories: shared memory (so
called multiprocessor) and distributed memory (so called cluster).

LEGENDA:

CU: Control Unit

PU: Processing Unit

IS: Instruction
Stream

DS: Data Stream

MM: Main Memory

I/O: Input Output

CU MMnPUn

ISn
DSn

CU MM2PU2

IS2 DS2

CU MM1PU1
IS1

DS1

ISn

IS2

IS1

Distributed memory (cluster)

LEGENDA:

CU: Control Unit

PU: Processing Unit

IS: Instruction
Stream

DS: Data Stream

MM: Main Memory

I/O: Input Output

CU MMnPUn

ISn
DSn

CU MM2PU2

IS2 DS2

CU MM1PU1
IS1

DS1

ISn

IS2

IS1

Shared memory (multiprocessor)

Processor 1

Example

Start Main

Start Task 1

Start Task 2

Start Task n

Wait Task 1

Wait Task 2

Wait Task n

Merge All Results

End Main

Processor 2 Processor n

Task 1

Task n
Task 2

Cluster computing
Nowadays the most implemented kind of architecture is a MIMD

mixed model of shared (inside the single node) and distributed
(between the different nodes) memory use.

In modern clusters, processors are grouped in nodes where they
share locally the memory. Globally different nodes
communicate by means of an interconnection network.

This kind of architecture finds his historical reason in the
costs/benefits trend of hardware and network technology

Clusters
• BlueGene/L IBM

[http://it.wikipedia.org/wiki/Blue_Gene#Blue_Gene.2FL]

• Mare Nostrum IBM
[http://www.bsc.es/index.html]

• Cray X1
[http://www.cray.com/products/x1e/]

• ASCI Purple
[http://www.llnl.gov/asci/platforms/purple/]

http://it.wikipedia.org/wiki/Blue_Gene
http://it.wikipedia.org/wiki/Blue_Gene
http://it.wikipedia.org/wiki/Blue_Gene
http://it.wikipedia.org/wiki/Blue_Gene
http://it.wikipedia.org/wiki/Blue_Gene
http://it.wikipedia.org/wiki/Blue_Gene
http://it.wikipedia.org/wiki/Blue_Gene
http://www.bsc.es/index.html
http://www.bsc.es/index.html
http://www.bsc.es/index.html
http://www.cray.com/products/x1e/
http://www.cray.com/products/x1e/
http://www.cray.com/products/x1e/
http://www.llnl.gov/asci/platforms/purple/
http://www.llnl.gov/asci/platforms/purple/
http://www.llnl.gov/asci/platforms/purple/
http://www.llnl.gov/asci/platforms/purple/
http://www.llnl.gov/asci/platforms/purple/
http://www.llnl.gov/asci/platforms/purple/
http://www.llnl.gov/asci/platforms/purple/

COW

MIMD

Shared
memory

MPP COMA

Distributed

memory

NUMAUMANORMA

Memory classification of
architectures

Memory classification of
architectures

• Beside the Flynn’s classification there is another
one based on the distribution of the memory.

• In this classification we distinguish between
shared and distributed memory and inside these
two categories:

-MPP model: Massively Parallel Processing
-COW model: Cluster Of Workstations
-UMA model: Uniform Memory Access
-NUMA model: Non Uniform Memory Access
-NORMA Model: NO-Remote Memory Access
-COMA model: Cache Only Memory Access

Shared/Distributed
Memory

Interconnection Network

Interconnection Network

Memory Memory Memory

CPU CPU CPU

CPU CPU CPU

•Shared: all the CPU access the same space. In this kind of system
memory can became a bottleneck. In general these systems are constituted
by a limited number of processors.

•Distributed: every CPU uses a local memory. CPU communicate by
means of messages. In general these systems are constituted by a large
number of processors (nodes).

UMA

Interconnection Network

Memory Memory Memory

CPU CPU CPU

Memory is shared equally by all the processors.

This model is easily expandable and easy to program, the use of
common variables permit to synchronize the processors.

The access to the I/O devices can be symmetric (all the processors can
access the devices) or anti-symmetric (only some processors can access
the devices)

Uniform Memory Access

NUMA

Interconnection Network

Memory Memory Memory

CPU CPU CPU

Non Uniform Memory Access

Each processor has its own memory but can access the memory of
another processor by means of the interconnection network.

NORMA

Message – Passing

Interconnection Network

Mem

CPU

Mem

CPU

Mem

CPU

Mem
CPU

Mem

CPU

Mem

CPU

NO-Remote Memory Access

Each node has a private memory and communicate with other processors only by means of a
message passing paradigm. These systems are more difficult to program because of the need of
specifing the synchronization between processors and the data distribution.

COMA

Interconnection Network

DIRDIRDIR

CPU CPU CPU

Cache Cache Cache

This is a particular configuration of simple NUMA system where the single
processor can access only a private cache which communicates with a private
memory.

Cache Only Memory Access

In general having N computing nodes the complexity of a fully connected network is
proportional to O(N2).

In order to afford the cost (in term of complexity) of a interconnection network in a
cluster several configuration have been suggested:

-Mesh

-Fat Tree

-Shuffle-Exchange

-Omega

-Butterfly

-Hypercube

Topology of interconnection
networks

Definitions
Networks are usually represented as graph where:
• Vertices corresponds to single processor node
• Edges corresponds to communications links and they can be unidirectional or

bidirectional
Important parameters of an interconnection network include:

– 1. Network Diameter – The longest of the shortest paths between various pairs
of nodes, which should be relatively small, is the latency is to be minimized. The
network diameter is more important with store-and-forward routing (when a
message is stored in its entirety and retransmitted by intermediate nodes) than
with wormhole routing (when a message is quickly relayed through a node in
small pieces).

– 2. Bisection (band)width – The smallest number (total capacity) of links that
need to be cut in order to divide the network into two sub networks of half the
size. This is important when nodes communicate with each other in a random
fashion. A small bisection (band)width limits the rate of data transfer between the
two halves of the network, thus affecting the performance of communications
intensive algorithms.

– 3. Vertex or node Degree – The number of communications ports required of
each node, which should be a constant, independent of network size if the
architecture is to be readily scalable to larger seizes. The node degree has a
direct effect on the cost of each node, with the effect being more significant for
parallel ports containing several wires or when the node is required to
communicate over all ports at once.

Mesh

In this network configuration nodes are disposed along a q-dimesional mesh.

The communication is permitted only between adjacent nodes.

An alternative mesh configuration is the torus mesh where the communication is
permitted also between some non-adjacent nodes.

mesh
torus mesh

Fat Tree

level 0

level 1

level 2

A fat tree network have this characteristic: having n nodes the number of levels is done
by log(4*n) [every node have 4 connection with super-level and 2 connection with the
sub-level]

NOTE: avogadro.cilea.it has a fat tree network myrinet connection linking 128 Xeon
3GHz nodes

Shuffle-Exchange

0 654321 7

Having n nodes [numbered from 0 to n-1] the interconnection is done by
means of two family:

-shuffle: connect the node i-th with the 2*i*mod(n-1)-th
-exchange: connect couples of nodes that differs only for their less significant bit

Omega
level 0 level 1 level 2

000
001
010
011

100
101

110
111

000
001
010
011

100
101

110
111

An n x n omega network
is made by log(2*n)
levels.

Every level is made by n/2
switches.

Butterfly

rank 0

rank 1

rank 2

rank 3

 0 0 0 0 1 1 1 1
 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

A butterfly network is made by (n+1)*2n nodes divided in n+1 ranks each containing
2n nodes.

Hypercube

Hypercube 3D Hypercube 4D

An hypercube network is made by n=2k nodes disposed along the vertices of an
k-dimensional cube.

Summary

>2k-1/k2k-12kShuffle
Exchange

2k-1k2kHypercube
2k2k2k(k+1)Butterfly

2 K23k/2K33D Torus
K23k-3K33D Mesh
2kKK22D Torus
K2k-2K22D Mesh
2k/2K1D Torus
1K-1K1D Mesh

Bisection
width

Network
diameter

of NodesNetwork
topology

Technologies of interconnection
networks

Ethernet
Myrinet
Infiniband

Ethernet

The name coming from the physical concept of
the ether, Ethernet is a large, diverse and general
family of frame-based network technologies for
LAN (Local Area Networking). Ethernet has been
standardized as IEEE 802.3. During the ’90s
became the most popular LAN technology
replacing competing LAN standards such as
Coaxial-cable Ethernet, FDDI, and others.
From the intensive computing point of view they
suffer from single points of failure and from
bandwidth choke points where a lot of traffic is
forced down a single link.

Myrinet

Myrinet, ANSI/VITA 26-1998, is a high-speed
LAN system designed by Myricom to be used as
an interconnect between multiple machines to
form computational clusters with much less
protocol overhead than standard Ethernet and
better throughput, less interference, and less
latency while using the host CPU.
Myrinet is often used directly by programs that
"know" about it, thereby bypassing a call into the
OS in order to use these feature.
For supercomputing, the low latency of Myrinet
is very important (more than its throughput
performance) because high-performance parallel
system tends to be bottlenecked by its slowest
sequential process, which is often the latency of
transmission of messages across the network.
In the November 2005 TOP500, the number of
supercomputers using Myrinet is down to 101
computers, or 20.2%.

Infiniband
InfiniBand is a high-speed serial
computer bus, intended for both
internal and external connections
mantained by the InfiniBand Trade
Association (IBTA).

InfiniBand is having some success against
other high performance computing switch fabric
vendors, notably Quadrics and Myricom
(Myrinet). In the supercomputing segment,
Infiniband's closest competition remains the low
cost and relative ubiquity of gigabit ethernet..
As gigabit Ethernet evolves toward 10-gigabit
Ethernet, InfiniBand will face stiffer competition.
Infiniband will retain a higher maximum
throughput (on QDR hardware) overall, but at
the 10 Gbit/s and below level, the primary
advantage of Infiniband becomes its fabric
architecture (rather than its speed).

Architectures hosted by CILEA

Xeon processors @ Avogadro.cilea.it
Opteron processors @ Golgi.cilea.it &

 @ Michelangelo.cilea.it

Xeon processors @
Avogadro.cilea.it

AVOGADRO

NODES: 128 SuperMicro - chassis Super SC811i-350

CPU: 256 Intel Xeon 3.06 GHz

RAM: 2 GB per CPU

STORAGE: 6400 GB; 20GB local node scratch; 1TB of shared scratch

NETWORK INTERFACE: Myrinet and Gigabit Ethernet

Opteron processors
@ Golgi.cilea.it

GOLGI

NODES: 55 (18 + 37)

CPU: 220 (72 AMD Opteron 848 2.2 GHz; single-core / 74 AMD Opteron 275 2.2 GHz; dual-core)

RAM: 2-4 GB per CPU

STORAGE: 2.6 TB

NETWORK INTERFACE: Infiniband 4x and Gigabit Ethernet

Opteron processors

@ Michelangelo.cilea.it

MICHELANGELO

NODES: 70 (Blades)

CPU: 280 (140 AMD Opteron 275 2.2 GHz; dual-core)

RAM: 4 GB per CPU

STORAGE: 25 TB

NETWORK INTERFACE: Infiniband 4x and Gigabit Ethernet

Performance issues:
how to get the best from your
x86, x86_64 or em64t system?

1. Know your processor
2. Know your compiler
3. Know your application

Performance issues:
how to get the best from your x86, x86_64 or em64t system?

1. Know your processor
2. Know your compiler
3. Know your application

1. Know your processor

Shortly: we will speak only of

Xeon Intel 32bit
EM64T Intel 64bit
Opteron AMD 64bit

1. Know your processor

Xeon was introduced in 2001 as Pentium4
version for workstations.

In 2002 a 130 nm version of the Xeon (Prestonia)
was released, supporting Intel's new
Hyper-Threading technology and having
a 512 KiB L2 cache.

Hyperthreading allows multiple threads to run simultaneously
[certain sections of the processor, those that store the architectural state, are
duplicated, but not the main execution resources – this allows the processor to pretend
being two “logical” processors]

It supports SSE2 instruction set

SSE adds eight 128-bit registers, enabling the programmer to perform math
of any type using entirely these registers. This increases the perforrmance,
since FPU and SSE instructions may be executed on the same clock cycle.

1. Know your processor
Opteron was released in 2003 as the first processor to:
• allow native execution of x86 32bit code without

speed penalties
• allow native execution of 64bit applications

May handle 240 bytes of memory access (1TB) and
248 bytes of virtual address space

In a multi-processor system the CPUs communicate
through high speed HyperTransport links (better scaling).

In May 2005 it was introduced the first dual-core CPU.

Each chip contains two separate processor cores sharing the same cache. The result
Is almost doubling the performance with almost the same electrical consumption.

It supports 3Dnow! instruction set

Also a set of fast math instructions. They are faster than SSE, but
do not use special registers, so FPU and 3Dnow! Instructions cannot be
executed simultaneously.

1. Know your processor
EM64T is Intel implementation of the 64bit
Extension of the 32bit architecture, released in 2005.

Differences with Opteron:
• Opteron supports 3Dnow! Instruction set (and now a

subset of SSE3)
• EM64T supports SSE3 Instruction set
• Other instructions are different – this may be

reflected in application performances

First EM64T addressed only 236 bytes of memory and were said to have
stability issues.

The first dual core Intel processor was recently announced.

Performance issues:
how to get the best from your x86, x86_64 or em64t system?

1. Know your processor
2. Know your compiler
3. Know your application

2. Know your compiler

Many C/C++ and Fortran compilers do exist on the market.
Let’s focus briefly on three:

• GNU: it’s free, it’s good and stable, but not particularly optimized
• INTEL: it’s not free, and optimized for INTEL (obviously) processors
• Portland: it’s not free, but you should think about it if you want to

obtain the maximum from your Opteron.

Be aware of commercial (mis)practices:

there is nothing in principle that makes Intel compilers unsuitable for Opterons
BUT reverse engineering shows that the Intel compiler check if the CPU is not
a genuine Intel and in that case it disables the use of many important optimizations
that might be applied, like the use of SSE3 instructions.

See e.g.: http://www.swallowtail.org/naughty-intel.html

2. Know your compiler

In the following slides we will show some of the most important optimization
options for the three before mentioned compilers.

BE AWARE: no universal recipes exist!!!

Each application is different, therefore for each application you should make
a complete test to discover the set of optimization options that give you
the best possible results.

Many, many other options exist for each compiler,
STUDY CAREFULLY YOUR MANUAL!!

2. Know your compiler

GNU compiler important optimization options (1/2):

-O0 or no -O option (default)
At this optimization level GCC does not perform any optimization and compiles the source code in the most straightforward way

possible. Each command in the source code is converted directly to the corresponding instructions in the executable file,
without rearrangement. This is the best option to use when debugging a program and is the default if no optimization level
option is specified.

-O1 or -O
This level turns on the most common forms of optimization that do not require any speed-space tradeoffs. With this option the

resulting executables should be smaller and faster than with -O0. The more expensive optimizations, such as instruction
scheduling, are not used at this level. Compiling with the option -O1 can often take less time than compiling with -O0, due to
the reduced amounts of data that need to be processed after simple optimizations.

-O2
This option turns on further optimizations, in addition to those used by -O1. These additional optimizations include instruction

scheduling. Only optimizations that do not require any speed-space tradeoffs are used, so the executable should not increase
in size. The compiler will take longer to compile programs and require more memory than with -O1. This option is generally the
best choice for deployment of a program, because it provides maximum optimization without increasing the executable size. It
is the default optimization level for releases of GNU packages.

-O3
This option turns on more expensive optimizations, such as function inlining, in addition to all the optimizations of the lower levels

-O2 and -O1. The -O3 optimization level may increase the speed of the resulting executable, but can also increase its size.
Under some circumstances where these optimizations are not favorable, this option might actually make a program slower.

-funroll-loops
This option turns on loop-unrolling, and is independent of the other optimization options. It will increase the size of an executable.

Whether or not this option produces a beneficial result has to be examined on a case-by-case basis.

2. Know your compiler

GNU compiler important optimization options (2/2):

-Os
This option selects optimizations which reduce the size of an executable. The aim of this option is to produce the smallest possible

 executable, for systems constrained by memory or disk space. In some cases a smaller executable will also run faster, due to
better cache usage.

-march= (pentium4|nocona|athlon-mp|opteron|…)
[NB: athlon-mp is for operon if GCC < 3.4]
The default architecture is i386. GCC runs on all other i386/x86 architectures, but it can result in degraded performance on more

recent processors. If you're concerned about portability of an image, you should compile it with the default. If you're more
interested in performance, pick the architecture that matches your own.

-mfpmath= (387|sse|sse2)
The default choice is -mfpmath=387 (Standard 387 Floating Point Coprocessor). An experimental option is to specify both sse and

387 (-mfpmath=sse,387), which attempts to use both units.

 -ffast-math
Optimization that provides transformations likely to result in correct code but it may not adhere strictly to the IEEE standard. Use it,

but test carefully.

Further reading: http://www.linuxjournal.com/article/7269

2. Know your compiler

INTEL compiler important optimization options (1/2):
-O0
This option disables all types of optimizations. It is recommended to use this in early stages of development, until we know that our

application is working correctly.
-O1 or -O
This option optimizes for speed bearing in mind the size of code. Suitable for very large code size where in the focus is not on

performing iterations (loops). The high level optimizations it performs are as follows: disables software pipelining, disables loop
unrolling,global code scheduling, enables optimization for server applications (straight line and branch like with not too many
branches).

-O2 (default)
Option ‘–O2’ (alphabet capital ‘O’ & number two): This is the default level of optimization (and also the recommended level in most

case). It creates the fastest code in most cases but could increase the executable code size. It is suitable for typical integer
applications that do not use a lot of floating point math. The high level optimizations it performs are as follows: Global code
scheduling, Software pipelining, Predication, Control Speculation, Dead code elimination and Dead-store elimination, Loop
unrolling, Partial Redundancy elimination, Exception handling optimizations, Structure alignment lowering and optimizations.

-O3
Enables all “-O2” optimization as well as more optimizations suitable for loop intensive code (a lot of iterations) that does a lot of

floating point arithmetic on large data sets. Better performance that the “-O2” option is not guaranteed unless there are a lot of
iterations in the code and large data sets are involved with a lot of floating point arithmetic. The high level optimizations it
performs are as follows: All the optimization done by the “-O2” option, Data pre-fetching, Loop and memory access
transformation, Scalar replacement.

-fast
The -fast option maximizes speed across the entire program.For systems based on Xeon processors, including those with EM64T,

-fast is equivalent to -O3, -ipo, -static, and -xP

2. Know your compiler

INTEL compiler important optimization options (2/2):

-ipo
Interprocedural optimizations, including selective inlining, among multiple source files.

-ax{K|W|N|B|P}
Automatic Processor Dispatch. Generates specialized code and enables vectorization for the indicated processors while also

generating non-processor-specific code. You can use more than one letter to tune for multiple processors in the same
executable.

W – Intel Pentium 4 processors and AMD Athlon 64 and Opteron* processors, and processors supporting Intel® EM64T.
P – Code is optimized for Intel® Core™ Duo processors, Intel® Core™ Solo processors, Intel® Pentium® 4 processors with

Streaming SIMD Extensions 3 (SSE3), compatible Intel processors with SSE3, and processors supporting Intel® EM64T. The
resulting code may contain unconditional use of features that are not supported on other processors.

N – Code is optimized for Intel Pentium 4 and compatible Intel processors with Streaming SIMD Extensions 2 (SSE2). The resulting
code may contain unconditional use of features that are not supported on other processors.

-x{K|W|N|B|P}
Processor-specific targeting. Generates specialized code for the indicated processor and enables vectorization. The executable

should only be run on the targeted compatible processors.

-mtune=[proc]
Targets optimization for specified processor, but produces code that will run on any processor. Possible values of [proc] include

pentium4 (default), pentium, pentiumpro, and pentium-mmx.

2. Know your compiler

PGI compiler important optimization options:

-O0 –O1 –O2 (default) –O3
You should by now know what they are.

-fast
Chooses generally optimal flags for the target platform.

-fastsse
Chooses generally optimal flags for a processor that supports the SSE (Pentium 3/4,

AthlonXP/MP, Opteron) and SSE2 (Pentium 4, Opteron) instructions.

-tp k8-64
Target optimization to the 64-bit Opteron processor.

-mp
Enable the compiler to generate multi-threaded code based on the OpenMP

directives.

2. Know your compiler

Performance issues:
how to get the best from your x86, x86_64 or em64t system?

1. Know your processor
2. Know your compiler
3. Know your application

3. Know your application

Power is nothing without control.

Although compilers generally produce very compact
object code, many performance improvements are
possible by careful source code optimization. Most
such optimizations result from taking advantage of
the underlying mechanisms used by compilers to
translate source code into sequences of instructions.

This argument could be covered in a semester
course, or more. I will show only a couple of
examples.

3. Know your application
Explicit Parallelism in Code

Optimization
Where possible, break long dependency chains into several independent dependency chains that can then
be executed in parallel, exploiting the execution units in each pipeline.
Rationale and Examples
This is especially important to break long dependency chains into smaller executing units in floating-point
code, because of the longer latency of floating-point operations. Because most languages (including ANSI C)
guarantee that floating-point expressions are not reordered, compilers cannot usually perform such
optimizations unless they offer a switch to allow noncompliant reordering of floating-point expressions
according to algebraic rules.
Avoid
double a[100], sum;int i;
sum = 0.0f;
for (i = 0; i < 100; i++) {
sum += a[i]; }

Notice that the four-way unrolling is chosen to exploit the four-stage fully pipelined floating-point
adder. Each stage of the floating-point adder is occupied on every clock cycle, ensuring maximum
sustained utilization.

Preferred
double a[100], sum1, sum2, sum3, sum4, sum;
int i;
sum1 = 0.0;
sum2 = 0.0;
sum3 = 0.0;
sum4 = 0.0;
for (i = 0; i < 100; i + 4) {
sum1 += a[i];
sum2 += a[i+1];
sum3 += a[i+2];
sum4 += a[i+3];}
sum = (sum4 + sum3) + (sum1 + sum2);

3. Know your application
Replacing Integer Division with Multiplication

Optimization
Replace integer division with multiplication when there are multiple divisions in an
expression. (This is possible only if no overflow will occur during the computation of
the product. The possibility of an overflow can be determined by considering the
possible ranges of the divisors.)

Rationale
Integer division is the slowest of all integer arithmetic operations.

Examples

Avoid code that uses two integer divisions:
int i, j, k, m;
m = i / j / k;

Instead, replace one of the integer divisions with the appropriate multiplication:

m = i / (j * k);

References
• Scott, L. Ridgway "Bioinformatics“. Perspectives in Biology and

Medicine, Volume 47(1),135-139, 2004.
• Luciano da Fontoura Costa, Bioinformatics: perspectives for the

future. Genet. Mol. Res. 3 (4): 564-574 (2004)
• C. Arlandini, GOLGI: un cluster Opteron per il CILEA. Bollettino del

CILEA April (101),9-12, 2006.
• Richard S. Morrison, Cluster Computing Architectures, Operating

Systems, Parallel Processing & Programming Languages, 2003.
• AAVV, Software optimization guide for AMD64 processors, AMD

Publication #25112, Rev. #3.06, September 2005

