Setting up a Bioinformatics Service Centre in a distributed environment

Patricia Rodriguez-Tomé

CRS4 Bioinformatica, Pula, Italy

http://www.bioinformatica.crs4.org

Parco Polaris Pula

Where are we?

Polaris

* ICT:

✓ CRS4, Centro Sviluppo Materiali spa, UNICA – I3Lab, ICT Farm...

* BioMed:

Neuroscienze PharmaNess scarl, Shardna spa, Biofarmitalia spa, Bio-Ker srl, Bioincubatore...

→This is a good environment for a Bioinformatics group

→1 person from September 05 to mid February 06, 12 today...

Our users

- Polaris users are our beta test users because of their proximity
 - ✓ Have small bioinformatics teams
 - We will provide advanced support
 - ✓ Have no team and/or low computing knowledge
 - We will provide basic and advanced support
- * We have begun joint collaborations on new software development and data analysis

We work with/for

- Many research projects/groups, bioscientists
 - ✓ Internal CRS4 Bioinformatics research group
 - Proteins, genome analysis, comparative genomics
 - ✓ Genotyping, Micro Arrays
 - Genetics, gene expression
 - ✓ Proteomics
 - Gel analysis, mass spectrometry
 - ✓ Data & text mining
- * Many questions, many databases, many programs

A new genotyping lab

- Medium throughput capacity data production
 - ✓ Databases: logbook (LIMS), results
 - ✓ Pipelines and Data Flow
- Data Management
- Data exploration
 - ✓ Experimental Data Analysis tools
 - ✓ Statistical Analysis for DNA chips
 - ✓ Workflows?
- Data security, privacy

What we (will) provide

- * FTP server
 - ✓ Mirror of EBI, swissprot@exapsy, nr@NCBI, Ensembl
 - ✓ Our own (future) developments
- * Database access: GO (FueGo), Ensembl
- * Web server (BioPortale) gives compute access to: Fasta/Blast, Clustalw/Muscle/T-Coffee, genotyping, micro array and proteomics tools

Our setup

- * Independent entities with their own private network.
- * CRS4 has computing power. For Bioinformatics we can use:
 - ✓ A cluster of 24 nodes (dual AMD opteron) as a file server (20TB)
 - ✓ A cluster of 48 nodes (dual AMD opteron) as compute server
 - ✓ Other file servers, web /FTP servers, our desktops...

No legacy

- * We are at the beginning of the project, we have no legacy
 - ✓ good isn't it?
 - ✓ what can we use that will take us into the future?
 - and prevent legacy for the next few years, hopefully
- * We need too use the machines available to us
- *"buzz words" we hear / read / don't always (fully) understand ...
 - ✓ Distributed computing
 - ✓ Grid
 - ✓ Workflows

Distributed computing

- * It looks like us:
 - ✓ Distributed groups
 - ✓ Distributed computers
- * What goes into distributed computing
 - ✓ Batch processing, high performance computing
 - ✓ "the GRID"

. . . .

- ✓ PBS, Globus, LSF, IBM's Data Grid, Sun Grid Engine
- Distributed computing has been around for years
 - ✓ "distributed grid" is new, but grid computing is still computing science research

Distributed what exactly?

- * Data
 - ✓ Data Grids / Data Webs
 - Remote data analysis and distributed data mining
 - We don't need it today
- Compute
 - ✓ CPU Grids
 - Use compute power all over the world
 - Programs must be "aware" of how to use distributed CPUs.
 - How many of those do we already have?
 - We should think GRID in the future developments, if necessary

We have a cluster-GRID— we can distribute

- * Breaking problems into smaller pieces
 - ✓ Distribute pieces of data onto all nodes, distribute jobs on those nodes and merge the results when all jobs have completed
 - looks good for comparative genomics
- * Applications need to be parallelized to benefit from the grid
 - ✓ To "difficult" we leave that to the experts
 - (we are not interested)
- Write new algorithms to solve new / existing problems currently unsolved

First Problems encountered

- * Old programs were written on 32 bits machines
 - ✓ New processors: 64bits, Intel and AMD
 - Compilation and execution problems
 "segmentation faults"
- * Make sure the results are identical and correct
 - ✓ This is true also when parallelizing a code or breaking it into pieces.
 - Because one should never blindly trust a computer...
- Cost of migration (development)

Architecture http://www.bioinformatica.crs4.org

Data server current setup

- * Target files like databases for blast or fasta are made available from the data server
- * Currently the directories are accessed as dynamic mount points -eg all nodes from the compute server can mount the data server bioinformatica disks
- * Why ?
 - our current jobs are short to medium size
 - ✓ time cost of copying each time the files is to high vs execution time
 - ✓ we run these jobs MANY times

Future setup

- * Nodes specialized in short and medium size computation
 - ✓ dynamic mount of the data server directories
- Nodes specialised in long computations
 - ✓ copy of the necessary target files
- * Nodes are already specialized,
 - ✓ but they currently all mount the directories

Surprise !!!!

- * yes, the GRID is raw computing power
 - but there is a ticket to pay to enter
- it is slower when we send the calculations to the cluster
 - Delay between the job submission to the cluster and the time it starts executing
 - This delay may become longer than the waiting time on standard batch queues system
 - or even longer than the actual execution time of the job!
 - ✓ The cluster is best suited for long jobs, not for short ones.

Rules

- * A set of rules are integrated into the application to either keep the job on the local machine or send it to the best suited SGE queue..
- ToDo: set of rules for checking the CPU usage of the Zope server and decide where to send the job
 - ✓ waiting for the production Zope machine

And still to do

- * the genotyping lab will produce sensitive data that should not be seen by other users
 - ✓ from the compagnies
 - ✓ related to patients
- * The CRS4 IT group is preparing for us a private subnet, which will be secured
 - ✓ data distribution
 - ✓ job execution
 - ✓ subnet will be dynamically generated when the job is submitted from a specific IP addresses range.

Workflows

- * used to define processes for large-scale analysis
 - ✓ specifies what analysis need to be executed
 - ✓ the data flow between them
 - ✓ and relevant execution details
- * graphical workflow managers like Taverna help
- * but still, workflows are not easy to build
- * difficult for me, a seasoned bioinformatician... it will certainly be to difficult for our bioscientist users!

BioPortale

- * a central access point for all users
- * conceals the complexity of interacting with the Grid
- * provides a user friendly interface using Web form, which is a familiar sight for the user
- * defines static workflows
- * ToDo: more advanced facilities
 - ✓ like letting the user define its own workflow
 - ✓ but we need to educate them first!
 - bioinformatics-training the bioscientists is part of our mandate

Our First Workflow

* run on demand

Standard Blast form

built as a
Zope
product
and
displayed
by Plone

The JobID is a 'session ID' that uniquely identifies a job. It is randomly generated, thus difficult to guess.

The user can retrieve its job output at a later

ToDo: retrieve the job status for long running jobs.

time;

Job Id

Enter the job Id to retrieve previous results

ToDo: list the currently available jobsId for this user and their status

points for static workflow access

More workflows

- * just replace Blast by Fasta, ClustalW, Muscle ...
- * the Zope products are modular and can be reused
 - it is just very long to develop products that can be reused
 - ✓ and difficult to find the people who have the knowhow
 - ✓ (it is much easier to develop ad-hoc templates ... future legacy stuff)
- * these are the basis for the future workflows

Some general thoughts after 4 months of development

- Large number of "more suited" machines is better than a few "big ones"
 - Easier to upgrade
 - Redundancy and failover
- Grid is better suited for long jobs than short ones
- * Grid is Not easy not for the bench bioscientist
 - Need of friendly interfaces
- * Grid is still young, will evolve
 - ✓ get more or less easy?

* BUT

- ✓ there is still the need for a powerful machine as web server to run the short calculations
- ✓ and for large shared memory machines for some calculations or databases

For what should we use the grid?

- * to run many processes simultaneously
 - ✓ high number of jobs, example from the BioPortale
 - send jobs to different nodes of the grid
 - ✓ users that have many problems
 - send each problem to a different node
 - ✓ workflows that can be processed simultaneously
- * to run multi-process jobs for our internal research and collaborations
 - ✓ docking most certainly
 - ✓ genome comparisons
 - microarray analysis
 - ✓ image processing
 - genotyping

The People

- Paolo Zanella, Anna Tramontano, Patricia Rodriguez-Tomé
- * Giuliana Brunetti, Simone Carcangiu, Matteo Floris, Lisa Marras, Joël Masciocchi, Betta Muscas, Massimiliano Orsini, Enrico Pieroni, Frédéric Reinier, Alphonse Thanaraj, Maria Valentini (and new people soon)
- * And help from CRS4 IT group:
 - ✓ Lidia Leoni, Antonio Concas, Marco Pinna, Matteo Vocale, Carlo Podda, Alan Scheinine

Parco Polaris Edificio 3

Please visit us

