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We have generated and analyzed/ing several
datasets

1) c-myc dataset (enginered rat fibroblasts)

)

2) TAC dataset (mouse)

3) Ewing sarcoma dataset (human)

4) Aging dataset (human time series &
monozygotic twins)

5) c-myc exon array dataset (enginered rat
fibroblasts)



Probe selection

* Time series (myc on and myc off data
sets, cardiac hypertrophy dataset)

* Linear model with empirical bayes
shrinkage of variance (limma,
Bioconductor).

» Contrasts of any time point with respect to
zero time point



Significance analysis:
ANOVA-MULTIPLE TEST COMPARISON

Preprocessing for “dimensionality reduction” of the
probeset number

ldentify genes with significative expression levels
difference between the two conditions (perturbed and
unperturbed)

Differences are analyzed over all times

Significance analysis applied to all probesets and
eventual correction with FDR



c-Myc-triggered gene expression

* C-Myc encode for transcriptional regulators whose
inappropriate expression is correlated with a wide array of
human malignancies.

» Up-regulation of Myc enforces growth, antagonizes cell cycle
withdrawal and differentiation, and in some situations promotes
apoptosis.

« c-myc-/- cells reconstituted with the conditionally active,
tamoxifen-specific c-Myc-estrogen receptor fusion protein
(MycER) allows the fine and selective change of of c-Myc
activity by Tamoxifen .

Time series experiment with 5 time points in triplicate and 9000
probes

From the J.M. Sedivy lab O’Connel et al JBC 2004



Evaluation of global gene expression of left
ventricular tissue in animal model of
left ventricular hypertrophy (LVH)
induced by transverse aortic constriction
(TAC).

*Time series experimental design

‘Measurements were done by 15 Affymetric chips at T1=0,
T2=2,0or T3=4 weeks after TAC.

Each time point have been repeated with 5 replica



Genomic analysis drawbacks

* single gene analysis is not sufficient to
understand cell mechanisms undergoing
experimental conditions

 cell behaviour is a complex phenomenon:
several elements (e.g. genes) act together
In order to generate it



Perturbation approach

*These experiments can be conceptualized as “perturbation” of
a “basal state” (cell growth, metabolism, young phenotype, cancer
phenotype etc)

«“External perturbations” like temperature in physical systems are
realized by gene activation via transcription factor triggering (c-
myc, dfoxo-nutrition, aging)

Emergent properties arising in the context of perturbation theory
are the so called “phase transitions” (superconductivity,
superfluidity,etc) and “condensation” phenomena.
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Targeting c-Myc-activated genes with a correlation
method: Detection of global changes in large
gene expression hetwork dynamics
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This work studies the dynamics of a gene expression time series
network. The network, which is obtained from the correlation of
gene expressions, exhibits global dynamic properties that emerge
after a cell state perturbation. The main features of this network
appear to be more robust when compared with those obtained
with a network obtained from a linear Markow model. In particular,
the network properties strongly depend on the exact time se-
quence relationships between genes and are destroyed by random
temporal data shuffling. We discuss in detail the problem of
finding targets of the c-myc protooncogene, which encodes a 0.90 030
transcriptional requlator whose inappropriate expression has been
correlated with a wide array of malignancies. The data used for
network construction are a time series of gene expression, col- 015 ! 015
lected by microarray analysis of a rat fibroblast cell line expressing
a conditional Myc-estrogen receptor oncoprotein. We show that
the correlation-based model can establish a clear relationship
between network structure and the cascade of c-myc-activated ¢
genes.
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Fig. 3. Network of selected Myc-influenced
pathways showing positive and negative
correlations. The red and blue arrows denote
positive and negative co-regulation, respectively.
The thickness of the arrows is proportional to the
magnitude, or absolute value, of the co-regulation.
A network with these properties is called a
weighted directed graph.



Multiscale correlation for co-
regulation detection

«Capture correlation profile changes at several scales (whole array, gene family and
pathways) and is informative of significative activity

spathways synthesis into single functional forms (Fluxes) or index such as Subgraph
Conductance.

«assessment of co-regulation between and within several pathways

*\When the perturbation is conditionally switched on, the correlation between genes with
a significant change in their expression level is altered on a genomic scale

We have strong indications that a similar transition is conserved on different scales
and is indicative of co-regulation changes

To reduce the dimensionality of the problem and introduce “a-priori biological
knowledge”, we will extend this method by mapping the gene arrays data onto gene
pathways and ontologies.

Castellani et al, PNAS 2001
Castellani et al, Learning and Memory 2005, BMC Bioinformatics 2007, IJCB 2007
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A biophysical model of bidirectional synaptic
plasticity: Dependence on AMPA
and NMDA receptors
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%“ Fig. 3. Synaptic strength, measured as AMPAR conductance depicted as a
% ca.‘:b function of presynaptic stimulation frequency (f) and postsynaptic membrane
voltage (V). (a) A two-dimensional plot depicting postsynaptic membrane po-
As (@) tential as a function of presynaptic stimulation frequency. The grey scale indicates
the conductance level of the AMPAR. At low stimulation frequencies and postsyn-
Fig.1. Anidealized model for the oycle of GluR1 phosphorylation,/dephosphar- apticvoltages, the conductance is below baseling, defined asf = 0, = — 100,
ylation at two sites. The model assumes two specific kinases (EK1, EK2) and Thediagonal line indicates alinear f — Vrelation, whichwe assumeto extract the
twe opposing specific phosphatases (EP1, EP2). It is assumed that high- results in b. (B) AMPAR conductance as a function of presynaptic stimulation

frequency stimulation preferentially stimulates the activity of protein kinases,
resulting in GluR1 phospharylation, whereas low-frequency stimulation pref-
erentially stimulates the activity of protein phosphatases, resulting in GluR1
dephosphorylation.

frequency, where a linear dependence of W on fis assumed (as shown in a).
Low-frequency stimulation induces LTD, whereas high-frequency stimulation
induces LTP.
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A model of bidirectional synaptic plasticity: From
sighaling network to channel conductance

Gastone C. Castellani,'*® Elizabeth M. Quinlan,* Ferdinando Bersani,'
Leon N. Cooper,#? and Harel Z. Shouval*>

'Physics Department, DIMORFIPA, CIG, Bologna University, Bologna 40137, Italy; ZInstitute for Brain and Neural Systems and
*Physics and Neuroscience Department, Brown University, Providence, Rhode Island 02912, USA; “Neuroscience and Cognitive
Sciences Program, University of Maryland, College Park, Maryland 20742, USA; *Department of Neurobiology and Anatomy,
University of Texas Medical School at Houston, Houston, Texas 77030, USA

In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be
bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term
synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/
dephosphorylation of sites on the a-Amino-3-hydroxy-5-methyl4-isoxazolepropionic acid (AMPA) receptor subunit
protein GluRI. Bidirectional synaptic plasticity can be induced by different frequencies of presynaptic stimulation,
but there is considerable evidence indicating that the key variable is calcium influx through postsynaptic
N-methyl-p-aspartate (NMDA) receptors. Here, we present a biophysical model of bidirectional synaptic plasticity
based on [Ca**]-dependent phospho/dephosphorylation of the GluRl subunit of the AMPA receptor. The primary
assumption of the model, for which there is wide experimental support, is that the postsynaptic calcium
concentration, and consequent activation of calcium-dependent protein kinases and phosphatases, is the trigger for
phosphorylation/dephosphorylation at GluRl and consequent induction of LTP/LTD. We explore several different
mathematical approaches, all of them based on mass-action assumptions. First, we use a first order approach, in
which transition rates are functions of an activator, in this case calcium. Second, we adopt the Michaelis-Menten
approach with different assumptions about the sighal transduction cascades, ranging from abstract to more detailed
and biologically plausible models. Despite the different assumptions made in each model, in each case, LTD is
induced by a moderate increase in postsynaptic calcium and LTP is induced by high C#** concentration.

12:000-000 ©2005 by Cold Spring Harbor Laboratory Press ISSN 1072-0502/05; www learnmem.org Learning & MEI'I‘IOI‘Y 1
www.ieammem.crrg



Castellani et al.

Figure 1. A schematic of an excitatory glutamatergic synapse. Action

Castellani et al.
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Multiscale Correlation Model:
c-Myc results
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Multiscale Correlation Model: human aging results
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“Databases” like KEGG have also an
interesting network structure, it is
possible that biologically relevant
informations can be retrieved from the
topological structure of nodes
(pathways) and edges (common genes
between two pathways)

The most relevant edges can be focal
areas from which biological messages are
spread throughout the network (like the
hubs for the nodes)



Pathway network analysis

Given significant nodes and edges, the
pathway network can be reconstructed.

Edges and nodes can be ranked based
on their centrality in the network
(connectivity degree and betweenness)



Betweenness centrality

Betweenness centrality is a very interesting
parameter because:

- it can be calculated both for nodes and edges

- it is a measure of the possible information
flow through that element, thus if it is
affected by experimental conditions it is very

likely that such perturbation can spread to
the whole system more easily
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120 Histogram of betweenness centrality

of pathways extracted from KEGG hsa
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Plot of betweenness centrality
of pathways extracted from KEGG hsa
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0.06869 7|Galactose metabolism
0.053446 169 Insulin signaling pathway
0.049498 20| Purine metabolism
0.043014 39| Tryptophan metabolism
0.039993 33| Tyrosine metabolism
0.039176 62| Glycerolipid metabolism
0.032689 176|Alzheimer's disease
0.031585 17|Androgen and estrogen metabolis
0.031433 173 | Type Il diabetes mellitus

0.02946 1|Glycolysis / Gluconeogenesis
0.029339 191|Prostate cancer
0.022151 24|Glycine, serine and threonine me
0.021969 172 Adipocytokine signaling pathway
0.020961 126 PPAR signaling pathway
0.020138 22| Glutamate metabolism
0.019782 30|Lysine degradation
0.018842 87|Butanoate metabolism

0.01853 96| Nicotinate and nicotinamide mete
0.018316 50| Starch and sucrose metabolism
0.018112 115|Glycan structures - biosynthesis

Top 20 pathways
extracted

from KEGG Database
ranked for their
betwennes centrality



Pathway significance analysis

Node (pathway) or edge (intersection)
significance analysis can be performed by
considering the total number of genes
represented in KEGG and the total
number of statistically significant genes,
compared with the significant genes found
iIn a node or edge and their total number of
elements (e.g. by a test based on the
hypergeometric distribution)



2.4 Fisher’s exact test { Draghici et al., 2003)

We consider that there are N single-symbol-annotated genes on the micro-
array (replicates were averaged by calculating the mean). which are either
significantly differentially expressed (5) or not (F), and either belong to a
pre-defined pathway list (P) or not (NP), see Table 2. If we pick randomly
P genes, we would like to estimate the probability of having exactly o genes
mn 8. The p-value of having & genes or fewer in § can be calculated by
summing the probabilities of a random list of K genes having 1, 2,. ... &

(1)(r20)
= i P =i
p=1- 3 AL (1)
rar !
()

This is a one-sided test in which the P values correspond to over-
represented lists of genes.

A review about similar current tools used for group testing on the
level of Gene Ontology (GO) terms was given by Khatn and Draghici

[200)5).

genes in §:




0 1 Totals
1 a b a+b
0 C d c+d
Totals a+c b+d n

Null table is
constructed

by the
multinomial

distribution and
then

tested by a X?
test



Fisher exact test for a 2x2 contingency table

0
1 a
0 C

Totals a+c

The probability
Is due by the
Hypergeometric
distribution

1 Totals

b a+b

d c+d
b+d n

(a+c)! (b+d)!
alcl * bld!

!
(a+b)! (c+d)!




Pathways and their intersections
significance analysis

 calculated considering the hypergeometric
distribution:

p(x) = choose(m, x) choose(n, k-x) / choose(m+n, k)

* where
— p= probability.

— X = number of significant probes in a pathway (or
intersection)

— m = total number of significant probes.
— n = total number of non significant probes.
— Kk = number of probes in a pathway.

* P <0.05 was considered as significant



Network representation

» Significantly underrepresented: (-1)
 Significantly overrepresented: 1
* Not significant: O
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CONCLUSIONS AND PERSPECTIVES

TUMOR

AGING







Young [Ca] 1 mm

Centenarian [Ca] 1 mm

jik, 44
5000+
2500+
0 ==
2300+
=
o Sb 1DID 150
Time (ms]) Sw M0
4
Young [Ca] 10 mm
ik, 44

Ta00+

5000+

25004

1538ms

Time (ms)

1 SU
Sy 209

4

jik, £
750+
500+
* nhw_‘..nl. A J:‘W‘..“Jf\ W\-
2504 e " T L
i e e
. -»Mu-wW”WW“ ey
i it " o
) WWM WW g
e s
0 L B, - L B ,.w p..mfum M“W
-250+
-500 | 1536 ms
T T T T
1} a0 100 150
Time (ms) Swe 140
2
Centenarians [Ca] 10
jik, 44
2300+
2000+
1500+
1000+
500+
ol s
153 B ms
T T
o a0 100 1 SD
Time (m=) Swe 1110

=



