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Glimpses into the world etc ….

Algorithms are the winning tool.

Sorry…. good algorithms are the winning tool,    
           especially when dealing with very large 
data.



    Inefficient algorithms….
…. have the unpleasant property of resisting to              
                  hardware improvement:

A polynomial-time algorithm solves a problem on n data in time t1 = c ns 

An exponential-time algorithm solves a problem on n data in time t2 = c sn

                             with c, s constants

With a computer k times faster, and same running time, we process N > n 
data, according to the laws:

 t1 = c ns,    k t1 = c Ns

t2 = c sn,    k t2 = c sN

N = k1/s n

N = n + logskk sn = sN
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Paralogy tree construction
                   ……. via transformation distance 

Pisanti N., Marangoni R., Ferragina P., Frangioni A., Savona A., 
Pisanelli C., Luccio F. PaTre: A Method for Paralogy Trees 
Construction. J. Computational Biology, 5 (10) 791-802, 2003 

How does the genomic information increase?

external imports    - Transfections
                     -  Horizontal transfer 

Endogenous mechanisms
  (genic or genomic) duplications: Large scale

Tandem
Dispersed
Single gene



The fate of the copy 

Non-functional:  pseudogene

Functional:  paralog

genome as a set of families of paralogs

 How does the genome choose the paralog to duplicate 
within a family?

 Is the duplication rate constant among the various 
families?

 Are sparse duplications correlated to sparse deletions?

PARALOGY TREE 



Couple-comparison methodCouple-comparison method
Transformation Distance (TD)Transformation Distance (TD)

Often newest genes are the shortest ones Often newest genes are the shortest ones 

To insert sequences imply paying metabolic costs. To delete To insert sequences imply paying metabolic costs. To delete 
sequences has no metabolic costsequences has no metabolic cost

We need an asymmetric distance:We need an asymmetric distance:

        TD(S,T) = the cost of the minimum-length script able to    TD(S,T) = the cost of the minimum-length script able to    
    
                transform S into T transform S into T 

        Elementary operations : Insertion, Copy, Inverted copyElementary operations : Insertion, Copy, Inverted copy  



TD: an exampleTD: an example

       f    g   h 
S=ATCGATCAGCTGCCCAATGAATCAGATAAAGTTTC  
     1ÉÉÉÉÉ.ÉÉ11ÉÉ.....16ÉÉÉÉÉÉ..25ÉÉÉÉÉÉÉ35  
        f                  g     h 
T=ATCGATCAGCTTTCACTACGAATGAATCAGATTGGTAGCTTTGAAATAG  
     1ÉÉÉÉÉÉÉ..11ÉÉÉÉÉÉ...21ÉÉÉÉÉÉÉÉÉÉÉ.ÉÉÉ38ÉÉÉÉÉÉÉ48  
 
 
Script transforming S into T    Description 
     
1) copy f      copy (1, 1, 11) 
2) insertion of TTCACTACG    insert (TTCACTACG)  
3) copy g      copy (16,21,12) 
4) insertion of TGGTAGC     insert (TGGTAGC)   
5) inverted copy of h     copy (25,38,11,1) 
 



PaTrePaTre

Input: TD values for each possible couple made by the Input: TD values for each possible couple made by the 
genes of the familygenes of the family

Building-up of the directed graph of distancesBuilding-up of the directed graph of distances

Edmonds’ algorithm: extraction of the LSA (Lightest Edmonds’ algorithm: extraction of the LSA (Lightest 
Spanning Arborescence) Spanning Arborescence)  optimal paralogy tree optimal paralogy tree

Generation of optimal and sub-optimals (space of Generation of optimal and sub-optimals (space of 
quasi-optimal solutions)quasi-optimal solutions)



PaTre has been tested by simulationPaTre has been tested by simulation

……because there are no experimental data because there are no experimental data 
on the history of families of geneson the history of families of genes
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1044
1187

1035

757
955

704

505
526

394

305

428

MFINFRP

str01 str02 str03

str04 str05

str06

str07

str08

str09

str10

str11

0

1 2 3

4 5

6

7

8

9

10

11

output from PaTre for the 
simulated Ribosomal Protein of 
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the Ribosomal Proteins family of 
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After having tested PaTre on many examples,
we could conclude that  PaTre is able to PaTre is able to 
correctly reconstruct the simulated history of correctly reconstruct the simulated history of 
genetic familiesgenetic families, while ClustalW and other , while ClustalW and other 
similarity based methods fail.similarity based methods fail.


