

A Workflow for Retrieving Orthologous Promoters and Implications for Workflow Management Systems. A Case Study.

Part

From Components to Processes in Bioinformatics

Department of Bioinformatics Medical Faculty Georg-August-University Göttingen

Martin.Haubrock@bioinf.med.uni-goettingen.de

Components of transcriptional regulation

 Transcription factors (TFs) bind to specific sites (transcription factor binding sites, TFBS) that are either proximal or distal to a transcription start site (TSS).

Analysis of gene expression data

- Promoter analysis of co-expressed genes
 - Model:
 - Co-expression ~ Co-regulation
 - Given:
 - Set of potentially co-regulated genes
 - Task:
 - Find out the most likely set of transcription factor binding sites which could explain their co-regulation

Phylogenetic Footprinting

 Prediction of potential TFBS using phylogenetic footprinting approach

Idea:

- Not just coding regions, but also regulatory motifs are under a higher selective pressure than non-functional sections of a genome
- Sequence alignments of regulatory regions can be used to identify potential conserved motifs between species.
- A shared motif between many different species is assumed to more likely represent a real TFBS than a motif which is found in only one or a few species
- We have developed a Hidden Markov Model which predicts potential TFBS using sequence alignments of regulatory regions and matrix representation of known TFs

Challenges in promoter retrieval

- A unique and exact definition of a gene's promoter is a challenging task in computational biology:
 - The majority of regulatory motifs are located within the -500 to -1 region upstream of a gene's transcribed region
 - In-silico gene prediction is still a challenging task in computational genomics
 - Experimental high-quality data on transcript start is very sparse
 - The predicted transcript start locations annotated in the common public genome databases are prone to be erroneous and cannot be taken for granted

Ensembl: human entity of the IL-2 gene

- Genomic environment of the human IL-2 gene first exon:
 - located on chromosome 4
 - 4 exons, 3 introns
 - transcript length: 1,044 bps
 - Iength of the first exon: 441 bps, ~300 bps untranslated

								atgotattoacatgttoagtgtagttttatgacaaagaaaattttotgagttactttgt atcoccacccccttaaagaaaggaggaaaaactgtttoatacagaaggcgttaattgcat
1	ENSE00001293064	4	-1	123,596,899	123,597,339		0	441 GAATTAGAGCTATCACCTAAGTGTGGGCTAATGTAACAAAGAGGGATTTCACCTACATCC ATTCAGTCAGTCTTTGGGGGTTTAAAGAAATTCCAAAGAGTCATCAGAAGAGGGAAAAATG AAGGTAATGTTTTTTCCAGACAGGTAAAGTCTTTGAAAAATATGTGTAATATGTAAAACATT TTGACACCCCCATAATATTTTTCCAGAATTAACAGTATAAATTGCATCTCTTGTTCAAGA GTTCCCTATCACTCCTTTTAATCACTACTCACAGTAACCTCAACTCCTGCCACAATGTAC AGGATGCAACTCCTGTCTTGCATTGCA
	Intron 1-2	4	-1	123,596,809	123,596,898			90 gtaagtatattteetttettaetaaataacaatgeattataetttettag
2	ENSE0000935280	4	-1	123,596,749	123,596,808	0	0	60 AATTACAAGAATCCCAAACTCACCAGGATGCTCACATTTAAGTTTTACATGCCCAAGAAG
	Intron 2-3	4	-1	123,594,459	123,596,748			2,290 gtaagtacaatattttatgttcaatgagctgatgataattattattctag
3	ENSE00000935278	4	-1	123,594,315	123,594,458	0	0	144 GCCACAGAACTGAAACATCTTCAGTGTCTAGAAGAAGAACTCAAACCTCTGGAGGAAGTG CTAAATTTAGCTCAAAGCAAAAACTTTCACTTAAGACCCAGGGACTTAATCAGCAATATC AACGTAATAGTTCTGGAACTAAAG
	Intron 3-4	4	-1	123,592,468	123,594,314			1,847 gtaaggcattactttatttgctctcaaaaattaacattttcttttatag
4	ENSE00001138256	4	-1	123,592,080	123,592,467	0	-	388 ggatctgaaacaacattcatgtgtgaatatgctgatgagacagcaaccattgtagaattt

Ensembl: murine instance of the IL-2 gene

- Genomic environment of the mouse IL-2 gene's first exon:
 - located on chromosome 3
 - 3 exons, 2 introns
 - transcript length: 527 bps
 - Iength of first exon: 236 bps, ~50 bps untranslated

								gtgtatggggtttaaagaatteeagagagteateagaagaggaaaaaeaaaggtaatg ctttetgeeaeaeaggtagaetetttgaaaatatgtgtaatatgtaaaaeategtgaeae ceceatattattttteeageattaaeagtataaattgeeteeeatgetgaagagetgeet
1	ENSMUSE00000345573	3	-1	37,317,267	37,317,502	-	0	236 ATCACCCTTGCTAATCACTCCTCACAGTGACCTCAAGTCCTGCAGGCATGTACAGCATGC AGCTCGCATCCTGTGTCACATTGACACTTGTGCTCCTTGTCAACAGCGCACCACTTCAA GCTCCACTTCAAGCTCTACAGCGGAAGCACAGCAGCAGCAGCAGCAGCAGCAGCAGC
	Intron 1-2	3	-1	37,317,168	37,317,266			99 gtaagtgcacagccatcccatctatataataatgtgttacgctttctcag
2	ENSMUSE00000172600	3	-1	37,317,108	37,317,167	0	0	60 AATTACAGGAACCTGAAACTCCCCAGGATGCTCACCTTCAAATTTTACTTGCCCAAGCAG
	Intron 2-3	3	-1	37,314,686	37,317,107			2,422 gtgagtgagtttctgtgtttaactgatggttaagcttattactcctctag
3	ENSMUSE00000172601	3	-1	37,314,539	37,314,685	0	0	147 GCCACAGAATTGAAAGATCTTCAGTGCCTAGAAGATGAACTTGGACCTCTGCGGCATGTT CTGGATTTGACTCAAAGCAAAAGCTTTCAATTGGAAGATGCTGAGAATTTCATCAGCAAT ATCAGAGTAACTGTTGTAAAACTAAAG
	Intron 3-4	3	-1	37,312,767	37,314,538			1,772 gtaaggtgttgctttatttgctaatcctacaattttatattctttttag
4	ENSMUSE00000172602	3	-1	37.312.271	37.312.766	0	-	496 GGCTCTGACAACACATTTGAGTGCCAATTCGATGATGAGTCAGCAACTGTGGTGGACTTT

BLAST result

- BLAST result of the predicted human IL-2 5⁻-UTR against the mouse genome. The Ensembl visualization of the BLAST analysis shows that the corresponding ortholog region in the mouse genome can be reidentified with this analysis.
- The 5^{*}-UTR region have to be extended so the promter regions have to be adapted in parallel.

Chr. 3 Length	37,315,500 37,316,500	37,317,500 425 Кb	37,318,500 37,319
Conservation	Constrained elements		
10-way pecan	10 amniota verte brates Pecan		
7-way pecan	7 eutherian mammals Pedan		
DNA(contigs)	AL	662823.12 >	
Blast hits			
Ensembl trans.	< 112 Ensembl Known Protein Coding		
Vega Havana gene	< II2-001 Vega Coding		
Genscan	< GENSCAN00000425336 Ab-initio Genscan trans		

Identifying true orthologs

- The majority of protein-encoding genes in eukaryotic organisms starting with a 5' untranslated regions (5'-UTRs) as a first exon.
- For 775 orthologous upstream sequence pairs (human-mouse) with known TFBSs we find that ~25% of all orthologous sequence pairs differ by more than 500bp in their distance to the (annotated) TSS.

Conservation of regulatory upstream regions

- The phylogenetic conservation of regulatory upstream regions seems to be high enough between mammalian species
- Blast basedreidentification within the respecitive genomes is possible
- Example:
 - Blast of 500 bp human upstream promoter of IL-2 against the mouse genome
 - Alignment length: 488
 - Percent of identity: 78.07

Orthologous promoter retrieval example workflow

Requirements for workflow management systems

Requirement	Category	Mandatory?	Remarks
Conditional branching	control flow	yes	
Loop (conditional)	control flow	yes	
Loop (for)	control flow, data handling	no	Can be substituted by conditional loop + arithmetics
Loop (iteration over lists)	control flow, data handling	no	Can be substituted by for loop + by-index access
Arithmetic operators and functions	control flow, data handling	yes	
Primitive data types	data handling	yes	
Lists	data handling	yes	By-index element access, addition and removal required
Multi-dimensional lists	data structures	no	Can be substituted by one-dimensional lists + index arithmetics
Complex data types	data handling	no	Can be substituted by strings; sub-data access methods required

The presented orthologous promoter retrieval workflow defines some requirements for WMS. Roughly they can be distinguish between control flow and data handling-related requirements.

Mapping requirements to workflow management systems

- Neither of the two WMS mentioned on this slide provides all features which are required for the orthologous promoter retrieval.
- But both system are user-extensible

Requirement	Available in Taverna	Available in Bio-jETI
Conditional branching	yes	yes
Loop (conditional)	yes (implicitly)	yes
Loop (for)	yes (implicitly)	yes
Loop (iteration over lists)	yes	yes
Arithmetic operators and functions	no	no
Primitive data types	yes	yes
Lists	yes (not all required functionality available yet)	yes (not all required functionality available yet)
Multi-dimensional lists	yes (by embedding in one- dimensional-lists)	yes (by embedding in one- dimensional-lists)
Complex data types	yes (as XML, but no awareness of further semantics)	yes (as XML, but no awareness of further semantics)

Semantic process classification

- A classification schema (or ontology) of node types offered by a WMS is essential to identify the nodes matching a certain demand
 - Taverna: provider-oriented classification
 - Bio-jETI: definition of services taxonomies possible
- Service transparency
 - If the same functionality occurs multiple times in the node type list, a WMS should be able to choose the "best" process node transparently
- Semantic data type classification
 - A more detailed semantic or ontology-based description of the kind of data "understood" by the various available processing node types would be beneficial for the workflow design process (model checking)

Nested workflows

 Encapsulation of sub-workflow in a single, re-usable processing node. Both Taverna and Bio-jETI can collapse parts of the workflow graph into single nodes.

Publication support

- Publication of workflows to the public
 - Bio-jETI is able to export workflows as webservices
 - In Taverna no similar feature is found yet

Implementation of new process node types

 WMS must provide an easy-to-use framework for integrating user-supplied resources. Configurable database queries or command line execution services are available in Bio-jETI and Taverna.

Conclusions

Workflow management systems

 WMS like Taverna and Bio-jETI provide a considerable amount fo functionality required for systems biology tasks

Data-handling

- Requirement: List data type
 - adding, removing, indexing, check for exististancs which allows to add and remove elements, to determine wether or not a list contains element, and to access elements by their index would be a minimum requirement
- Support for domain-specific complex data types
 - beneficial for workflow design and verification process (XML)

Data standards

 How to develop and establish domain-specific data type specifications, like XML schemas, so that they will actually get widely used within the community?

Acknowledgements

Thanks for your attention!!!

- UKG, Göttingen University (Medical school)
 - Tilman Sauer
 - Knut Schwarzer
 - Torsten Crass
 - Edgar Wingender
- Institute for Informatics (Göttingen University)
 - Stephan Waack
 - Anna-Lena Lamprecht
- Special thanks to the initiators of the part ,From components to Processes in Bioinformatics'
 - Tiziana Margaria
 - Bernhard Steffen
 - Robert Giegerich

