Formal Executable Descriptions of Biological Systems

Pierpaolo Degano

Dipartimento di Informatica, Università di Pisa, Italia

joint work with a lot of nice people :-)

Pisa, 14th June 2007

From Syntax to Semantics

To understand function, study structure – F. Crick

seems to work no longer in modern biology:

STRUCTURE AND FUNCTION

The genome as a 4-letters language — syntax \Downarrow what and how it expresses for — semantics

Systems Biology (a partial view)

- Hypothesis-driven investigation in place of reductionism
 - build a formal model of a biological system (generation of hypothesis)
 - experiment it (tuning of hypothesis) until the model gets validated and ready to use
- Leads to a global view of a system but often only offers snapshots of its behaviour
- Huge amount of data available hard to handle, very hard to interpret

Computer Science (similarities)

- A computer systems is
 - formally modelled (generation of hypothesis)
 implemented, refined and eventually validated (experimenting on hypothesis)
- Experiments requires executing the model, to obtain its whole behaviour
- Analysis methods and tools exist
- ... and computational power increasingly grows

Long term goals

- Understand the functionality of bio-components
 assessment of known facts
 - discovery of new functionalities
- Investigate the underlying structure of biological complex systems
 - how genome, proteome and metabolome interact giving rise to emergent properties

Mathematical description of bio-phenomena

bio-physics – since Schrödinger, lots of differential equations, with deep statistical and stochastic models (monolithic, large, difficult to state, change, adapt and ... to solve for me:-)

Mathematical description of bio-phenomena

- bio-physics since Schrödinger, lots of differential equations, with deep statistical and stochastic models (monolithic, large, difficult to state, change, adapt and ... to solve for me:-)
- bio-informatics:

 structure (human) genome (DNA as a formal language over ACGT) and data bases of genes, proteins, metabolic pathways, ...

Mathematical description of bio-phenomena

- bio-physics since Schrödinger, lots of differential equations, with deep statistical and stochastic models (monolithic, large, difficult to state, change, adapt and ... to solve for me:-)
- bio-informatics:
 - structure (human) genome (DNA as a formal language over ACGT) and data bases of genes, proteins, metabolic pathways, ...
 - function Petri nets, Process calculi, Rewriting systems, ...

"cells as computational devices"

Metabolic and gene regulation networks, signalling pathways, etc are made of

millions of components acting independently, interacting each other, dispersed in solutions

- millions of components acting independently, interacting each other, dispersed in solutions
- interaction
 - is essentially binary

- millions of components acting independently, interacting each other, dispersed in solutions
- interaction
 - is essentially binary
 - occurs on selected sites (if any) between close enough, affine, non-separated components

- millions of components acting independently, interacting each other, dispersed in solutions
- interaction
 - is essentially binary
 - occurs on selected sites (if any) between close enough, affine, non-separated components
 - is local, but affects the whole system globally

Metabolic and gene regulation networks, signalling pathways, etc are made of

- millions of components acting independently, interacting each other, dispersed in solutions
- interaction
 - is essentially binary
 - occurs on selected sites (if any) between close enough, affine, non-separated components
 - is local, but affects the whole system globally

Just as concurrent, distributed, mobile processes

Processes

Concurrent, distributed, mobile processes are made of

- several components acting independently, interacting each other, distributed geographically
- interaction
 - is mainly binary
 - occurs on selected channels between components
 - is local, but affects the whole system globally

Process calculi: primitives

Few basic primitives for

- sending !a(v) and receiving ?a(v) the value v, if any, on channel a channels mimick interaction points, values the exchanged information
- performing non detailed activities abstracting from, e.g., biochemical details
- creating/handling channels

composed with few operators ...

Process calculi: composition

Among the few operators there are:

- parallel composition $P \mid Q$ cells as processes, that may interact or proceed
 independently
- choice P + Qaccording to a probabilistic distribution more to come

Process calculi: semantics

How do systems evolve?

- Semantics is given through a logically based inference system, defining transitions — how a configuration changes into another
- Communication, i.e. interaction, is the basic computational step

Process calculi: Semantics

Essentially, communication and asynchrony are ruled by:

• $?a(x).P \mid !a(v).Q \rightarrow P[x \mapsto v] \mid Q$ the activity is local

IF P → P' THEN P | Q → P' | Q
 its effect is global — more to come

Quantitative information

... otherwise "stamp collection" — Rutherford

- interactions occur at given rates channels posses rates
- (often) interactions are reversible (possibly with different rates)

the context affects the overall rates – not only temperature, pressure, etc, but also concentration – here the quantities of reactants per unit (typically, Gillespie's Stochastic Simulation Algorithm)

Summing up

- molecules, metabolites, compounds, cells as processes
- (biochemical) interactions as communications
- affinity of interaction as communication capabilities

(other features, like membranes, geometry, time, ... often treated *ad hoc* or still under investigation)

Process calculi specify and execute **Bio-systems**

What do we gain?

- run the model, and obtain virtual experiments an integral abstract description of system behaviour: unexpected, global properties may emerge
- formally analyse the executions, collecting e.g. statistical data on behaviour, or causality among interactions, or similarities/differences between systems, ...
- compositionality specify new components in isolation (e.g. active principles), put them aside the others with no other change and see (cf. ODE)

A simple example

Consider the enzyme-catalysed production of a product P from the substrate S:

$$E + S \rightleftharpoons_{K_{ES}}^{K_{ES}} ES \rightharpoonup^{K_P} E + P$$

The corresponding processes areE = !awhere $rate(a) = K_{ES}$ S = ?a.ESwhere $rate(\tau_1) = K_{ES}^{-1}$ $ES = \tau_1.(E|P) + \tau_{-1}.(E|S)$ where $rate(\tau_{-1}) = K_P$

A computation is

$$E = !a$$
where $rate(a) = K_{ES}$ $S = ?a.ES$ where $rate(\tau_1) = K_{ES}^{-1}$ $ES = \tau_1.(E|P) + \tau_{-1}.(E|S)$ where $rate(\tau_{-1}) = K_P$

$$\begin{aligned} n \cdot E \mid m \cdot S \xrightarrow{r_0} \\ (n-1) \cdot E \mid (m-1) \cdot S \mid ES \xrightarrow{r'_0} \\ (n-2) \cdot E \mid (m-2) \cdot S \mid 2 \cdot ES \xrightarrow{r_1} \\ (n-1) \cdot E \mid (m-2) \cdot S \mid ES \mid P \xrightarrow{r''_0} \\ (n-2) \cdot E \mid (m-3) \cdot S \mid 2 \cdot ES \mid P \xrightarrow{r} ... \end{aligned}$$

where the actual rates $r_0, r'_0, ...$ are typically computed with Gillespie's SSA and depend on the rates of channels and on the number of reactants.

Other approaches

Petri nets

- formal languages (P systems, ...)
- rewriting systems (κ-calculus, calculus of looping sequences, ...)
- Iogically based formalisms (Pathway logic, ...)

Our own work

A brief report on two ongoing investigations:

VIrtual CEII:

artificial ur-cell, from a simplified prokaryote — with a variant of the π -calculus

E. Coli:

the whole metabolic pathways, with knock-outs — with a very fast (subset of) the π -calculus

Towards a holistic model of a *whole* cell: all interactions among metabolic pathways (properties emerge), the whole movie not only snapshots

Building up VICE: the genome

Problems:

- not an arbitrary list of genes
- **small** enough for the sake of computability

Our choice: The "Minimal Gene Set"

- from Haemophylus influenzae, Mycoplasma genitalium
- cf. Glass et al. gene KO in vitro

Building up VICE: hypothesis

Reduction and update of the *Minimal Gene Set*, based on a functional analysis.

- selection of basic activities (*eating*, production of energy, synthesis of basic structural components, reproduction)
- choice of the 187 genes involved
- design of the metabolic pathways needed (presently only for *survival*)

VICE: Validation

Check on biological consistency:

- all the pathways selected have been taken: sufficient
- no genes are left inactive: necessary
- Comparison with real results:
 - confirm basic modelling choice
 - calls for deeper analysis and more features

Activities

Group pathway (and reactions) in the standard biochemical manner:

Oxidations: extraction of energy from nutrients:

 $Glycolysis \rightarrow Pyruvate \rightarrow \dots$

Lipid metabolism: synthesis of structural components from monomers: fatty acids...

Nucleotide metabolism: building DNA/RNA bases, no de novo synthesis

DNA/RNA synthesys: RNA for building proteins, DNA for reproduction – not yet available

Protein synthesis: no amino acids

Uptake: Glycerol, amino acids, nitrous bases, fatty acids...

... plus a few other pathways.

Virtual experiments

Through runs of the π -specification of VICE

- in presence of different quantities of food (VICE in parallel with different numbers of glucose processes naïve)
 - for different periods of time (computations of different length)

Under the assumption on the environment:

- enough nutrients (water, sugar, phosphates, amino acids, nitrous bases...)
- no toxics
- no competing organisms (a single VICE)
- right temperature, pressure, ...

Results

Data are collected from 10^3 computations, made of 10^4 transitions, involving 10^6 different processes (~ 12 hours each)

Throughput.

- Production of energy and metabolites, through oxidation of glucose, shows homeostasis
- biomass produced as expected
- Distribution of metabolites over Glycolysis pathway.
 - Like in real prokaryotes (in their steady state)
 - The distributions agree with those computed in vitro.

Steady state

pyruvate, diacilglycerol, phosphoribosylpyrophosphate

Usage of enzymes

Something emerges

- Add the specification of a regulatory feedback circuit on the enzyme phosphofructokinase (the more ADP the faster the phosphorilation of fructose-6-phosphate).
 Look then at the time course of fructose-6-phosphate and fructose-1.6-bephosphate
 - Change the feeding regimen by supplying the sugar:
 - all at the beginning, a huge quantity no oscillations
 - at a constant rate oscillations show up!!

Oscillations

Other case studies ...

- Specify and run the metabolome of Escherichia coli
- Because of efficiency problems, a new implementation
 - a subset of CCS (fast also with name passing)
 - essentially multiplication of stoichiometric matrices
 - more than two orders of magnitude faster than the previous one (10⁸ transitions involving 10⁷ processes in less than 8 hours — done while sleeping ...)

E. Coli

The virtual behaviour "matches" the real one
Knock out some genes

agrees on known KO (ppc, pgi, zwf)
a new KO (rpe) – no data in the literature

Neurons

- A first step to studying plasticity and memory
- Pre-synaptic mechanisms of neuro-transmitter release
- Executable model (in Spim)
- Results agree with other deterministic, non executable models
- More and news in a few minutes during Andrea's talk

Conclusions

- Cells as processes ⇒ "virtual" living matter
- Formal, mathematical theory ⇒ mechanical analysis tools
 - constructive and executable
 - compositional, with different abstraction levels
- Quantities crucial for behavioural descriptions
- New computational models (e.g. new interation mechanisms) ⇒ new semantics

To Do

- Far from satisfactory languages! New challenges:
 - membranes, compartments and the like
 - geometrical issues
 - more faithful (and efficient) bio-chemistry
 - causality
 - usability (graphich interfaces, fast interpreters, specification generators from data bases, ...)
 - new analysis techniques (static vs dynamic) and tools

Towards ...

Bio-calculus environment

Towards uniform (families of) environments

- sharing formal grounds and tools
- providing the user with mechanisms for describing systems at different levels of abstraction

More fundamental research and more case studies