

Intuitive and machine understandable representation of the bioinformatics domain and of related resources with Resourceomes

<u>Nicola Cannata</u>, Flavio Corradini, Sergio Gabrielli, Luana Leoni, Emanuela Merelli, Francesca Piersigilli, Leonardo Vito

Mathematic and Computer Science Department, University of Camerino, Italy

Houston, we have a problem

Meaning

Originally a genuine report of a life-threatening fault. Now used humorously to report any kind of problem.

How many minutes (hours) do we spend every day in Google and bibliographic searches?

In life sciences and "-omics" disciplines we are becoming used to deluges and overflows...

1: <u>Healthc Inform.</u> 2004 Mar; 21(3): 26-30.

Data overflow. Options are available to hold the tide of images and information.

Hagland M.

PMID: 15040049 [PubMed - indexed for MEDLINE]

Available online at www.sciencedirect.com

SCIENCE DIRECT.

Journal of Biomedical Informatics 39 (2006) 314-320

Biomedical Informatics

www.elsevier.com/locate/yjbin

Beyond the data deluge: Data integration and bio-ontologies

Judith A. Blake *, Carol J. Bult

The Jackson Laboratory, Bar Harbor, ME, USA

Received 31 August 2005 Available online 21 February 2006

The data overflow...

International sequence databases exceed 100 gigabases

In August 2005, the INSDC announced the DNA sequence database exceeded 100 gigabases. GenBank is proud of its contributions toward this milestone. We thank all the scientists who have worked through the submission process at GenBank and made their sequence data available to the world. See the related <u>press release</u>.

Genome Technology

Next-Gen Sequencing: The Waiting Game

June 2007 By Meredith Salisbury

Roche

- Platform cost: \$500,000
- Read length: 250 bp
- Cost per run: \$16,000
- Megabases per day: 200
- Cost per megabase: \$160

Illumina

- Platform cost: \$395,000
- Read length: 40-50 bp
- Cost per run: \$5,000
- Megabases per day: 333
- Cost per megabase: \$5

ABI 3730

- Platform cost: \$350,000
- Read length: 650+ bp
- Cost per run: \$55
- Megabases per day: 1.4
- Cost per megabase: \$880

Source: Elaine Mardis

Besides data overflow we are experimenting also **resources** overflow. E.g. academic <u>Articles</u>,...

Now science is becoming e-science...

Expert Opinion E-Science: The Grid and the Semantic Web

David De Roure, University of Southampton James A. Hendler, University of Maryland

Web scale

Figure 1. E-science needs aren't totally met by either the Grid or the Semantic Web. Rather, a Semantic Grid vision requires features of both. Hai Zhuge Chinese Academy of Sciences

> Networks pervade nature, society, and virtual worlds, giving structure and function to a variety of resources and behaviors. Discovering the rules that govern the future interconnection environment is a major challenge.

The Future Interconnection Environment

n 1960, Marvin Minsky predicted that computers would be as smart as humans within three to eight years. Nearly half a century later, however, computing systems still cannot pass the Turing test. Despite impressive achievements in robotics, mathematical theorem proving, scientific classification, and advanced user interfaces,¹ artificial intelligence remains elusive.

Scientists and engineers have nearly realized Vannevar Bush's dream of a universal multimedia data-processing machine with the Internet and the World Wide Web. Extending this vision into the future, Microsoft researcher Jim Gray foresees the development of highly secure, highly available, self-programming, self-managing, and self-replicating computer networks.² Gray imagines a system, akin to Bush's memex device, that can automatically organize, index, digest, evaluate, and abstract information. However, creating intelligent networks that can program, manage, and replicate themselves is a major challenge.

The China Knowledge Grid Research Group (http://kg.ict.ac.cn), established in 2001, is exploring the operating principles of this future interconnection environment.

TOWADD A NEW COMPLITING ENVIDONMENT

Web	<u>Images</u>	<u>Video</u>	News	Maps	more »	
-					Search	Advanced Scholar Search
					Coedich	Scholar Preferences
						Scholar Help

Stand on the shoulders of giants

Google Home - About Google - About Google Scholar

©2007 Google

Will e-science become g-science...?

Databases are essential resources for bioinformatics

Published online 5 December 2006

Nucleic Acids Research, 2007, Vol. 35, Database issue D3–D4 doi:10.1093/nar/gkl1008

The Molecular Biology Database Collection: 2007 update

Michael Y. Galperin*

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA

Received November 1, 2006; Revised and Accepted November 2, 2006

ABSTRACT

The NAR online Molecular Biology Database Collection is a public resource that contains links to the databases described in this issue of *Nucleic Acids Research*, previous NAR database issues, as well as a selection of other molecular biology databases that are freely available on the web and might be useful to the molecular biologist. The 2007 update includes 968 databases, 110 more than the previous one. Many databases that have been described in earlier issues of NAR come with updated summaries, which reflect recent progress and, in some instances, an expanded scope of these databases. The complete database list and summaries are available online on the *Nucleic Acids Research* web site http://nar.oxfordjournals.org/.

COMMENTARY

The current issue of the Nucleic Acids Research features 174 databases, of which 106 are new and 68 are updates of previtotal database list, which again held very nicely and showed surprising resilience.

In the comment to the last year's release of the NAR database collection (1). I have discussed the citation rates for various papers in the 2004 NAR database issue and noted that the high-citation rate of certain databases reflects their worldwide acceptance as de facto standards of protein functional annotation [UniProt, http://www.uniprot.org, No. 318, Ref. 2], domain structure [http://www.sanger.ac.uk/Software/Pfam/, No. 210, Ref. 3] and biomedical terminology [Gene Ontology, http://www.geneontology.org/, No. 487, Ref. 4]. However, citation data can be biased; e.g. in many articles use of information from publicly available databases is acknowledged by providing their URLs, or not acknowledged at all. Besides, some databases could be cited on the web sites and in new or obscure journals, not covered by the ISI Citation Index. With this in mind, I have tried here to use additional metrics for assessing the popularity of the NAR database issue. First, I have checked the citations of the database papers listed on the Google Scholar web site, which reflects citations on the web sites. In addition, I have looked at the number of times that the full text of each paper (in PDF or HTML versions) was downloaded from the PubMed

OXFORD JOURNALS

CONTACT US MY BASKET MY ACCOUNT

Nucleic Acids Research

ABOUT THIS JOURNAL CONTACT THIS JOURNAL SUBSCRIPTIONS

CURRENT ISSUE ARCHIVE

E SEARCH

Oxford Journals > Life Sciences > Nucleic Acids Research > Database Summary Paper Categories

NAR Database Categories List

Nucleotide Sequence Databases RNA sequence databases Protein sequence databases Structure Databases Genomics Databases (non-vertebrate) Metabolic and Signaling Pathways Human and other Vertebrate Genomes Human Genes and Diseases Microarray Data and other Gene Expression Databases Proteomics Resources Other Molecular Biology Databases Organelle databases Plant databases Immunological databases

- Compilation Paper
 Category List
- Alphabetical List
- Category/Paper List
- Search Summary Papers

Compilation Paper

- Category List
- Alphabetical List
- ▶ Category/Paper List
- Search Summary Papers

Oxford University Press is not responsible for the content of external internet sites

Nucleic Acids Research (NAR) - Oxford Journals

Database special issue

Web Servers are common tools for bioinformaticians

Nucleic Acids Research, 2006, Vol. 34, Web Server issue W3–W5 doi:10.1093/nar/gkl379

A compilation of molecular biology web servers: 2006 update on the Bioinformatics Links Directory

Joanne A. Fox, Scott McMillan and B. F. Francis Ouellette*

UBC Bioinformatics Centre, University of British Columbia, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC, Canada V6T 1Z4

Received April 29, 2006; Accepted May 2, 2006

ABSTRACT

The Bioinformatics Links Directory is a public online resource that lists the servers published in this and all previously published Nucleic Acids Research Web Server issues together with other useful tools, databases and resources for bioinformatics and molecular biology research. This rich directory of tools and websites can be browsed and searched with all listed links freely accessible to the public. The 2006 update includes the 149 websites highlighted in the July 2006 issue of Nucleic Acids Research and brings the total number of servers listed in the Bioinformatics Links Directory to over 1000 links. To aid navigation through this growing resource, all link entries contain a brief synopsis, a citation list and are classified by function in descriptive biological categories. The most up-to-date version of this actively maintained listing of bioinformatics resources is available at the Bioinformatics Links Directory website, http://bioinformatics.ubc.ca/resources/links directory/.

example, if you search for 'bioinformatics servers' using Google, you will face the daunting task of sorting through almost a million different websites. In an effort to provide clarity, Nucleic Acids Research has devoted several special issues to compiling molecular biology Web Servers (1) and Databases (2) helping researchers to quickly locate peer-reviewed tools and resources that directly apply to the changing bioinformatics landscape. Over the past 4 years, the NAR Web Server special issue has published a rich collection of over 500 different internet-based resources. This year, the 2006 Web Server issue highlights 149 bioinformatics and molecular biology servers that are all openly available to the world-wide research community. A complete listing of servers from the 2006 Web Server issue can be accessed online at http://bioinformatics.ubc.ca/resources/ links_directory/narweb2006/ and in Supplementary Table 1. Together with the long standing Database issue (2), these special issues at Nucleic Acids Research represent a valuable directory of resources for the global life sciences research community.

The Bioinformatics Links Directory, http://bioinformatics. ubc.ca/resources/links_directory/, is a public resource that lists the servers published in this and previous issues of Nucleic Aside Passageh Web Server issues together with

NAR Web Server Issue (July 1, 2006)

Search Jump to:

Links Directory Homepage

Nucleic Acids Research

Source: http://nar.oxfordjournals.org/content/vol34/suppl_2/index.dtl

NAR 2006 RSS

list by category

(PS)2 Protein Structure Prediction Server

(PS)2 Protein Structure Prediction Server performs automated homology modeling by combining PSI-BLAST, IMPALA, and T-Coffee for template selection and target-template alignment. The final three-dimensional (3D) structure is built using RAMP or MODELLER.

Y

Protein > 3-D Structure Prediction

website | Publiced

3DSS

3-Dimensional Structural Superposition (3DSS) is a tool for superposing two or more protein structures that uses RASMOL for visualization; some browser configuration is necessary.

<u>Protein > 3-D Structure Comparison</u> <u>Protein > 3-D Structure Retrieval, Viewing</u>

website | Pub

Year	Bioinformatics	BMC Bioinformatics	Journal of Computational Biology	PLoS Computational Biology	Computational Biology and Chemistry	Briefings in Bioinformatics	IEEE Trans. Comp. Biol. And Bioinformatics	Applied Bioinformatics	Int.J.of Bioinf. Res.& Appl. (IJBRA)
2005	900	414	83	61	58	47	34	32	32
2004	627	209	69		53	40	22	24	
2003	534	66	61		71	35			
2002	365	40	52		77	41			
2001	245	9	39		66	31			
2000	178	1	52		72	33			

Articles published "ONLY" from main bioinformatics journals

Bioinformatics is evolving

BLASTN 2.2.4 [Aug-26-2002]

"IN SILICO EXPERIMENTS"

277	S NCBI		protein-pro	tein BLAST
	Nucleotide	Protein	Translations	Retrieve results for an RI
1 m m	Search			
10.0				
	1			
	Set subsequence From:	To:		
	Choose database nr	*		
- 1/1		1200		
	Do CD-Search			
	Now: BL	AST! OF Reset query	Reset all	

To Web Services and workflows (now)

\wedge
5 2

to web interfaces and (perl) scripts... (with the advent of the WWW)

In this new bioinformatics <u>Web Services</u> play a key role. Programs interact with programs on the web...

Why to search for resources?

- you have to develop a program, a database, possibly avoiding to re-invent the wheel...

- interdisciplinarity...

introduction to a new domain. Obtain a fast overview of a (new, for you) scientific domain (preferably in a visual fashion) So, <u>where</u> to search for (bioinformatics) resources -that of course you are not aware of -?

In search engines?... Good luck!

News Gruppi bioinformatics resources

Ricerca avanzata Cerca Preferenze

altro »

Cerca: 💿 il Web 🔘 pagine in Italiano 🔘 pagine provenienti da: Italia

Desktop

Web

Personalizzazione Risultati 1 - 10 su circa 2.850.000 per bioinformatics resources. (0,18 secondi)

1.425 risultati memorizzati sul computer - Nascondi - Informazioni su

Immagini

Cannata2007-NETTAB.ppt - the bioinformatics domain and of related resources with

Bioinformatics Resources - [Traduci questa pagina]

Web

Resource for searching genetic databases, online tools, journals, and recent news. www.genet.sickkids.on.ca/bioinfo resources/ - 2k -Copia cache - Pagine simili - Salva risultato

Bioinformatics Resources - [Traduci questa pagina]

Course materials, book recommendations and links related to bioinformatics. www.bioinformaticscourses.com/ - 9k - Copia cache - Pagine simili - Salva risultato

Biotech: Bioinformatics - [Traduci guesta pagina]

Very good basic explanation of Bioinformatics - from the BioTech Resources Web Project at Indiana Univ and the Univ. of Texas. biotech.icmb.utexas.edu/pages/bioinfo.html - 1k - Copia cache - Pagine simili - Salva risultato

2Can Support Portal: Home Page - [Traduci questa pagina]

The bioinformatics educational resource. This site provides short and concise introductions to basic concepts in molecular and cell biology and ... www.ebi.ac.uk/2can/ - 11k - Copia cache - Pagine simili - Salva risultato

Bioinformatics resources - [Traduci questa pagina]

Its aims are to make essential bioinformatics tools easily accessible for the study of the relationships between the sequence, structure and function of ... www.biochem.ucl.ac.uk/~nagl/bioinformatics/bioinform_res.htm - 13k -Copia cache - Pagine simili - Salva risultato

In specialized web sites? ... First, find them!

ExPASy Proteomics tools

The tools marked by 🚵 are local to the ExPASy server. The remaining tools are developed and hosted on other servers.

[Protein identification and characterization] [DNA -> Protein] [Similarity searches] [Pattern and profile searches] [Post-translational modification prediction] [Topology prediction] [Primary structure analysis] [Secondary structure prediction] [Tertiary structure] [Sequence alignment] [Phylogenetic analysis] [Biological text analysis]

Protein identification and characterization

Identification and characterization with peptide mass fingerprinting data

- FindMod a Predict potential protein post-translational modifications and potential single amino acid substitutions in peptides. Experimentally measured peptide masses are compared with the theoretical peptides calculated from a specified Swiss-Prot entry or from a user-entered sequence, and mass differences are used to better characterize the protein of interest.

- · Mascot Peptide mass fingerprint from Matrix Science Ltd., London
- PepMAPPER Peptide mass fingerprinting tool from UMIST, UK
- PFMUTS Shows the possible single and double mutations of a peptide fragment from MALDI peptide mass fingerprinting
- ProFound Search known protein sequences with peptide mass information from Rockefeller and NY Universities [or from Genomic Solutions]
- ProteinProspector UCSF tools for peptide masses data (MS-Fit, MS-Pattern, MS-Digest, etc.)

In SIG web sites? ... Are they updated?

A Forum for collection, compilation and exchange of publications on biomedical text mining

Contents (by categories) * Search

Mission Statement * Submit an Article

Paper of the Month (Editor's choice) * Editorial Board

Useful Links: Other Bioinfo-Literature-Mining Resources * Contact BLIMP

BLIMP covers all publications related to the fast-growing field of biomedical literature and text mining. It is a one-stop resource, letting researchers find out who-does-what in the area and where it is published, bridging across the many discipline-specific venues in which biomedical text-mining papers are published.

BLIMP is committed to both coverage and relevance. It started with a large collection of publications, and constantly relies on authors to notify BLIMP through the <u>submission form</u> about their newly accepted papers. Relevance of submission is determined by the <u>editorial board</u> and each relevant paper is promptly added to the website.

NLP and Ontologies in Biomedicine
Information Extraction in Biomedicine
Information Retrieval in Biomedicine
Text Categorization in Biomedicine
Hybrid Methods and Combined Data Sources
Background on NLP
Background on Information Extraction
Background in Information Retrieval and Text Categorizatio
Background on Text Mining

Reviews on Text Mining in Biomedicine

Other

8238 Visitors Since February 2005

Copyright 2004: BLIMP, Queen's University

The BLIMP project was partially funded by NSERC Discovery Grant # 298292-04, and by Queen's University Principal's Development Award

Last update on: July 25, 2005 Updated By: Anirudh Garg Created By: Limin Zheng

The BioLink Homepage

Biological Literature, INformation and Knowledge

· CONTACT ·

About BioLINK:

With the increasing availability of textual information related to biology, including <u>MedLine</u> abstracts and full-text journal articles, research on information extraction is rapidly becoming an essential component of various bioinformatics applications. It is expected that text mining in general, and information extraction in particular, will provide tools to facilitate the annotation of vast amounts of molecular information, including gene sequences, transcription profiles and biological pathways.

The Special Interest Group on Text Mining (or BioLINK) was created to address the need of communication and interchange of ideas in the field of text mining and information extraction applied to biology and biomedicine. Information extraction (IE) is an outgrowth of work in automated natural language processing, which began in the 1950s with work on transformational grammar by Zellig Harris and later Noam Chomsky. Information extraction technology made rapid progress starting in the late 1980s, thanks to a series of conferences focused on evaluation of IE: the Message Understanding Conferences (MUCs). There is also a long history of research on applications in medicine. Applications to the medical field focus on two distinct sub-problems: improved access to the medical literature and extraction of information from patient records.

Despite these successes in other fields Natural Language Processing (NLP) techniques were not introduced in biology until the late 90's (first publication around 1997 at <u>ISMB97</u>). The field is dominated by two, not necessarily convergent, views.

last update: 2003/07/15 © by Martin Krallinger

Home Key Dates Program Accepted Papers Accepted Posters Agenda Paper Submission Call for participation Poster guidelines Registration Organization Program Committee Mailing List Contact Main Conference ISME07

BioLINK 2007

Home

BioLINK SIG: Linking Literature, Information and Knowledge for Biology

The Annual Meeting of The ISMB BioLINK Special Interest Group on Text Data Mining

In Association with ISMB 2007, Vienna, Austria

Thursday, July 19, 2007

With the increasing availability of textual information related to biology including Medline abstracts and full-text journal articles, the field of biomedical text mining has been rapidly maturing. It is concerned with using techniques from natural language processing, information extraction and information retrieval to automate knowledge discovery from biomedical text.

The BioLINK SIG meeting has been regularly held in association with the ISMB conference since 2001. The SIG focuses on the development and application of resources and tools for biomedical text mining. It is interdisciplinary in nature, and brings researchers applying natural language processing, text mining, information extraction and retrieval in the biomedical domain, together with scientists from bioinformatics and biology.

In the literature? ... When do you need them?

PubMed Update

Chart last updated: June 4, 2007

Data	Total Records	Dates Covered	Indexed Records Added	Date Added
PubMed	17,088,520	1951-present		
MEDLINE	15,883,894	1966-present	11,364	2007/05/28-2007/06/01
In Process	253,988			
OLDMEDLINE	420,961	1950-1965		2006/11/15

MEDLINE is generally updated each day, Tuesday-Saturday, with indexed citations. PubMed includes in-process citations which are added Tuesday - Saturday. These records are tagged [PubMed - in process]. Citations received electronically from publishers are tagged [PubMed -as supplied by publisher].

And also when articles are detected, maybe the presented resources are not there anymore!

BIOINFORMATICS

Vol. 20 no. 5 2004, pages 668–672 DOI: 10.1093/bioinformatics/btg465

404 not found: the stability and persistence of URLs published in MEDLINE

Jonathan D. Wren

Advanced Center for Genome Technology, Department of Botany and Microbiology, The University of Oklahoma, 620 Parrington Oval Rm. 106, Norman, OK 73019, USA

Received on June 18, 2003; accepted on June 25, 2003 Advance Access publication January 22, 2004

ABSTRACT

Motivation: The advent of the World Wide Web has enabled unprecedented supplementation of traditional journal publications, allowing access to resources, such as video, sound, software, databases, datasets too large to publish, and even supplementary information and discussion. However, unlike traditional publications, continued availability of these online resources is not guaranteed. An automated survey was conducted to quantify the growth in Uniform Resource Locators (URLs) published to date in MEDLINE abstracts, their current availability and distribution by journal.

Results: Of 1630 unique URLs identified, formatting and/or spelling errors were detected within 201 (12%) of them as published. After corrections were made, a survey revealed that ~63% of these URLs were consistently available, and another 19% were available intermittently. The rate of failure was far worse for anonymous login to FTP sites, with only 12 of 33 sites (36%) responding. This survey also shows that journals vary disproportionately in the number of web citations published, suggesting policy implementation among a few could have a profound impact overall. Out of the 306 journals with a URL published in an abstract, *Bioinformatics* published the most (12% of total).

Availability of URLs published in MEDLINE

Fig. 1. The number of unique URLs published in MEDLINE, plotted as a function of time. The proportion of URLs currently accessible (as of this survey) is broken down by year and displayed as shading on each bar. Online resources are playing an increasingly important role in scientific research, as evidenced by their inclusion in the abstract. Not surprisingly, the more recent the publication, the more likely the

In the age of WWW resources appear... and disappear

POLICY FORUM

INFORMATION SCIENCE

Going, Going, Gone: Lost Internet References

Robert P. Dellavalle,^{1,2,3}* Eric J. Hester,² Lauren F. Heilig,² Amanda L. Drake,² Jeff W. Kuntzman,⁴ Marla Graber,⁴ Lisa M. Schilling⁵

nternet references in medical and scientific periodicals may become more common as 7 million pages of new information, including data not available elsewhere, appear daily on the World Wide Web (WWW) (1). The Internet, of which the Web is part, consists of a worldwide system of computer networks. The Internet promotes easy access to and revision of data and allows information formats not suitable for print media including high-resolution images, motion video, animations, simulations, and program source code. However, unlike hard copy references, Internet references may change and become inaccessible (2-6).

Nearly 20% of Internet addresses in a Web-rich high school science curriculum became inactive between August 2002 and March 2003. Addresses with ".com" and ".edu" top-level domains most frequently became inactive (6, 7). In another study, 108 of 184 Internet addresses for an herbal remedy, Opuntia, became inactive within 4 years (8). Furthermore, no consensus on Internet reference format exists, especially with regard to providing accession (or citation) dates that report when authors viewed the information online (9–11).

the 6-week period immediately antecedent to the initiation of the research on 16 January 2003. For comparison, issues from the same calendar period, 1 December to 15 January, for the preceding 2 years were also examined. A reference was defined as a numbered citation appearing at the end of an article. Advertisements and articles without references were excluded. Internet reference categories were (i) active Internet reference-Internet address citation yielding information other than an error message when accessed via an Internet browser (e.g., Internet Explorer) and (ii) inactive Internet reference-Internet address citation yielding an error message when accessed via an Internet browser.

Each inactive Internet reference was further categorized, by using www.archive.org and www.google.com, as a (i) recoverable Internet reference—inactive Internet address citation yielding recoverable information with Internet archiving systems or (ii) unrecoverable Internet reference—inactive Internet address yielding no recoverable information. The type of referenced Internet material (e.g., PDF, unpublished document, or conference proceedings) was recorded. A comparison was made between these re10% at 15 months and to 13% at 27 months after publication (*13*) (fig. S1). For articles 27 months old, *JAMA* had the greatest Internet reference inactivity (21%) compared with *NEJM* (13%) and *Science* (11%).

Inactive Internet references were most commonly ".com" addresses (46% lost after 27 months) followed by ".edu" (30%), other (20%), ".gov" (10%) and ".org" (5%) (see table). Book reviews had the greatest loss (17%) and opinion and news articles, the least (8%) (13) (table S1).

In contrast to JAMA and NEJM, some articles in Science contained Internet references directing readers to Science's Web sites for supplemental material not published in the hard copy journal. These selfreferences accounted for approximately 1% of Internet references in Science. Excluding self-references raised the loss of Internet references in Science's 27month-old articles from 11.0 to 11.5%.

In September 2003, NEJM's and JAMA's, but not Science's, instructions to authors requested accession dates for an Internet reference. Over the study period, accession dates became more common in NEJM (0 to 93% of Internet reference citations), less common in JAMA (100 to 73%), and changed minimally in Science (1 to 0%).

Although our study may not be representative of the entire field (13), Internet references occurred frequently and were often inaccessible within months after publication in the highest-impact U.S. medical and scientific journals. The problem of impermanent Internet references

If you are lucky you can find some nice and intuitive reviews

What's with the "staying updated"? -TOC e-mail services -Subject alert services

W16-W19 Nucleic Acids Research, 2004, Vol. 32, Web Server issue DOI: 10.1093/nar/gkh453

PubCrawler: keeping up comfortably with PubMed and GenBank

Karsten Hokamp* and Kenneth H. Wolfe¹

Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada and ¹Department of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland

Received February 15, 2004; Revised and Accepted April 21, 2004

ABSTRACT

The free PubCrawler web service (http://www. pubcrawler.ie) has been operating for five years and so far has brought literature and sequence updates to over 22 000 users. It provides information on a personalized web page whenever new articles appear in PubMed or when new sequences are found in GenBank that are specific to customized queries. The server also acts as an automatic alerting system by sending out short notifications or emails with the latest updates as soon as they become available. A new output format and more flexibility for the email formatting help PubCrawler cope with increasing challenges arising from browser incompatibilities and mail filters, therefore making it suitable for a wide range of users.

Table L A list o	free literature u	pdate alerting services
------------------	-------------------	-------------------------

Service	URL.	
Amedeo	http://www.amedeo.com	
BioMail	http://biomail.sourceforge.net/biomail	
JADE	http://www.biodigital.org/jade	
PubCrawler	http://www.pubcrawler.ie	
PubMed Cubby	http://www.pubmed.gov	
ScienceDirect	http://www.sciencedirect.com	

that user, leaving only the new items to be compiled into a web page that closely resembles the look and feel of the familiar Entrez pages. Alerting occurs by email through short notifications or delivery of the complete results.

A number of other selective dissemination of information (SDI) services exist, both commercial and free to the public. Some examples include PubMed Cubby, BioMail, JADE, OVID and Science/Direct (Table 1). Together with PubCraw

Resource directories are good place to start...

Google Search Directory Help

 \odot Search only in Bioinformatics \bigcirc Search the Web

Bioinformatics

Science > Biology > Bioinformatics

Go to Directory Home

Categories

Companies (146) Directories (14) Education (47) Employment (2) Hardware (1) Human Genomics (224) Molecular Evolution (12) Online Services (118)

Programming (18) Publications (10) Research Groups (31) Software (65)

Related Categories:

Health > Medicine > Informatics (338)

Science > Biology > Biochemistry and Molecular Biology > Biomolecules > Proteins and Enzymes > Proteomics (159)

Science > Environment > Biodiversity > Informatics (17)

Web Pa	Pages Viewing in Google PageRank order	<u>View in alphabetical order</u>
	The Swiss Institute of Bioinformatics Homepage (SIB) - http://www.isb-sib.ch	/
	SIB operates the ExPASy proteomics server and the Swiss node of EMBnet. Teaching	activities include a series of post-graduate courses given at the
	Universities of Geneva and Lausanne, as well as at the EPFL, and a Masters Degree in	bioinformatics. Major research areas include the development of
	integrated databases and software resources in the field of proteomics.	
-	 The International Society for Computational Biology - http://www.iscb.org 	
	The International Society for Computational Biology is dedicated to advancing the scient emphasis is on the role of computing and informatics in advancing molecular biology.	ific understanding of living systems through computation; the
-	 The Open Lab - http://bioinformatics.org/ 	
	A community focused on the freedom of information as it pertains to the biosciences.	
-	 The Ensembl Project - http://www.ensembl.org/ 	

Bioinformatics Links Directory

The Bioinformatics Links Directory features curated links to molecular resources, tools and databases. All of the resources are free or available for a nominal fee. The links listed in this directory are selected on the basis of recommendations from bioinformatics experts in the field. We make every effort to list useful, well tested resources instead listing all tools. We also rely on input from our community of bioinformatics users for <u>suggestions</u>. Starting in 2003, we have also started listing all links contained in the NAR Webserver issue. These NAR links are indicated with a NAR Webserver icon in the directory. The UBC Bioinformatics Centre does not specifically endorse or support any of the links in the directory, nor are we responsible for the content of any of these external sites.

Search Jump to: -----

Computer Related (64)

This category contains links to resources relating to programming languages often used in bioinformatics. Other tools of the trade, such as web development and database resources, are also included here.

DNA (392)

This category contains links to useful resources for DNA sequence analyses such as tools for comparative sequence analysis and sequence assembly. Links to programs for sequence manipulation, primer design, and sequence retrieval and submission are also listed here.

Education (76)

Links to information about the techniques, materials, people, places, and events of the greater bioinformatics community. Included are current news headlines, literature sources, educational material and links to bioinformatics courses and workshops.

Expression (241)

Links to tools for predicting the expression, alternative splicing, and regulation of a gene sequence are found here. This section also contains links to databases, methods, and analysis tools for protein expression, SAGE, EST, and microarray data.

Human Genome (114)

This section contains links to draft annotations of the human genome in addition to resources

Model Organisms (191)

Included in this category are links to resources for various model organisms ranging from mammals to microbes. These include databases and tools for genome scale analyses.

Other Molecules (12)

Bioinformatics tools related to molecules other than DNA, RNA, and protein. This category will include resources for the bioinformatics of small molecules as well as for other biopolymers including carbohydrates and metabolites.

Protein (687)

This category contains links to useful resources for protein sequence and structure analyses. Resources for phylogenetic analyses, prediction of protein features, and analyses of interactions are also found here.

RNA (92)

Resources include links to sequence retrieval programs, structure prediction and visualization tools, motif search programs, and information on various functional RNAs.

Sequence Comparison (210)

Tools and resources for the comparison of sequences including sequence similarity

Terrent & Addition - Beatly - Mars Bergersen - Liberty Consis

Journals & Articles • Books • More Resources • Library Services • How Do I?

HSLS Home > Guides > Molecular Biology & Genetics > OBRC: Online Bioinformatics Resources Collection

OBRC	The Online Bioinformatics Resources Collection (OBRC) contains annotations and				
 Email Suggestions 	links for 1746 bioinformatics databases and software tools.				
 Recommend a New Resource 	Search Powered by Search examples: transcription factors, promoters, RNAi Vivisimo				
	 Browse: <u>DNA Sequence Databases and Analysis Tools</u> (366) <u>Enzymes and Pathways</u> (147) <u>Gene Mutations, Genetic Variations and Diseases</u> (170) <u>Genomics Databases and Analysis Tools</u> (361) <u>Immunological Databases and Tools</u> (41) <u>Microarray, SAGE, and other Gene Expression</u> (121) <u>Organelle Databases</u> (27) <u>Other Databases and Tools (Literature Mining, Lab Protocols, Medical Topics, and others)</u> (105) <u>Plant Databases</u> (94) <u>Protein Sequence Databases and Analysis Tools</u> (316) <u>Proteomics Resources</u> (40) <u>RNA Databases and Analysis Tools</u> (147) <u>Structure Databases and Analysis Tools</u> (256) 				

But the amount of resources and their variety require that directories would be machine understandable

May 17, 2001¶ ¶ The Semantic Web¶

¶

$$\label{eq:linearised} \begin{split} \ddot{A} \cdot new \cdot form \cdot of \cdot Web \cdot content \cdot that \cdot is \cdot meaningful \cdot to \cdot computers \cdot will \cdot unleash \cdot a \cdot revolution \cdot of \cdot new \cdot possibilities \P \end{split}$$

By Tim Berners-Lee, James Hendler and Ora Lassila ¶

1

The entertainment system was belting out the Beatles' "We Can Work It Out" when the phonerang. When Peteranswered, his phone turned the sound down by sending a message to all the other *local* devices that had a *volume control*. His sister, Lucy, was on the line from the doctor's office: "Mom needs to see a specialist and then has to have a series of physical therapy sessions. Biweekly or something. I'm going to have my agent set up the appointments. "Peterimmediately agreed to share the chauffeuring. "I

At the doctor's office, Lucy instructed her Semantic Web agent through her handheld Web browser. The agent promptly retrieved information about Mom's prescribed treatment from the doctor's agent, looked up several lists of providers, and checked for the ones in-plan for Mom's insurance within a 20mile radius of her home and with a rating of excellent or very good on trusted rating services. It then be gan trying to find a match between available appointment times (supplied by the agents of individual providers through their Web sites) and Intelligent software agents will then be able to "reason" on the resources and to easily find them for you

Engineering in Genomics

the emerging in-silico scientist: how text-based bioinformatics is bridging biology and artificial intelligence

By Jonathan D. Wren

Perspective

Time to Organize the Bioinformatics Resourceome

Nicola Cannata, Emanuela Merelli, Russ B. Altman*

We will be witnessing the birth of the artificial, or in-silico, scientist. — J. D. Wren [1]

he field of bioinformatics has blossomed in the last ten years, and as a result, there is a large and increasing number of researchers generating computational tools for solving problems relevant to biology. Because the number of artifacts has increased greatly, it is impossible for many bioinformatics researchers to track tools, databases, and methods in the field-or even perhaps within their own specialty area. More critically, however, biologist users and scientists approaching the field do not have a comprehensive index of bioinformatics algorithms, latabases, and literature annotated with information a their context and appropriate use. We suggest that the full set of bioinformatics resources-the "resourceome"-should be explicitly characterized and organized. A hierarchical and machine-understandable organization of the field, along with rich cross-links (an ontology!) would be a useful start. It is likely that a distributed development approach would be required so that those with focused expertise can classify resources in their area, while providing the metadata that would allow easier access to useful existing resources.

keyword searching [5]. However, the lack of standard terms makes sensitive and specific searches difficult. In addition, most search hits confound papers, Web sites, tools, departments, and people in a manner that makes extracting useful information very difficult.

Recognizing this limitation, there have been some grassroots attempts to organize the bioinformatics resourceome. Among the most famous are the "archaeological" Pedro's List-a list of computer tools for molecular biologists (http://www.public.iastate.edu/~pedro/ research_tools.html)-and the Expasy Life Sciences Directory, formerly known as the Amos's WWW links page (http://www.expasy.org/links.html). The Bioinformatics Links Directory (http://www.bioinformatics.ubc.ca/resources/ links_directory/) today contains more than 700 curated links to bioinformatics resources, organized into eleven main categories, including all the databases and Web servers yearly listed in the dedicated Nucleic Acids Research special issues [6]. The National Center for Biotechnology Institute has tried to make access to its suite of tools transparent, with moderate success. Many Web sites can be found listing "useful sites," especially concerning special interest or limited topics (e.g., microarrays, text mining, and gene regulation). But all of these efforts are limited by the difficulty in maintaining

Two "orthogonal" classifications

 resources should be classified according their <u>nature</u> (a program, a database, a paper, a person...) and according <u>what they refer to</u>, what they are for

Computer science subjects can be classified...

Top Two Levels of The ACM Computing Classification System (1998) A. General Literature A.0 GENERAL A.1 INTRODUCTORY AND SURVEY • A.2 REFERENCE (e.g., dictionaries, encyclopedias, glossaries) A.m MISCELLANEOUS · B. Hardware B.0 GENERAL B.1 CONTROL STRUCTURES AND MICROPROGRAMMING (D.3.2) B.2 ARITHMETIC AND LOGIC STRUCTURES B.3 MEMORY STRUCTURES B.4 INPUT/OUTPUT AND DATA COMMUNICATIONS B.5 REGISTER-TRANSFER-LEVEL IMPLEMENTATION B.6 LOGIC DESIGN B.7 INTEGRATED CIRCUITS B.8 PERFORMANCE AND RELIABILITY NEW! (C.4) B.m MISCELLANEOUS C. Computer Systems Organization C.0 GENERAL C.1 PROCESSOR ARCHITECTURES C.2 COMPUTER-COMMUNICATION NETWORKS C.3 SPECIAL-PURPOSE AND APPLICATION-BASED SYSTEMS (J.7) C.4 PERFORMANCE OF SYSTEMS C.5 COMPUTER SYSTEM IMPLEMENTATION C.m MISCELLANEOUS D. Software D.0 GENERAL D.1 PROGRAMMING TECHNIQUES (E) D.2 SOFTWARE ENGINEERING (K.6.3) D.3 PROGRAMMING LANGUAGES

- D.4 OPERATING SYSTEMS (C)
- D.m MISCELLANEOUS

• E. Data

- E.0 GENERAL
- E.1 DATA STRUCTURES
- E.2 DATA STORAGE REPRESENTATIONS
- E.3 DATA ENCRYPTION
- E.4 CODING AND INFORMATION THEORY (H.1.1)
- E.5 FILES (D.4.3, F.2.2, H.2)
- E.m MISCELLANEOUS

• F. Theory of Computation

- F.0 GENERAL
- F.1 COMPUTATION BY ABSTRACT DEVICES
- F.2 ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY (B.6, B.7, F.1.3)
- F.3 LOGICS AND MEANINGS OF PROGRAMS
- F.4 MATHEMATICAL LOGIC AND FORMAL LANGUAGES
- F.m MISCELLANEOUS

G. Mathematics of Computing

- G.0 GENERAL
- G.1 NUMERICAL ANALYSIS
- G.2 DISCRETE MATHEMATICS
- G.3 PROBABILITY AND STATISTICS
- G.4 MATHEMATICAL SOFTWARE
- G.m MISCELLANEOUS
- <u>H. Information Systems</u>
 - H.O GENERAL
 - H 1 MODELS AND PRINCIPLES
 - H.2 DATABASE MANAGEMENT (E.5)
 - H.3 INFORMATION STORAGE AND RETRIEVAL
 - H.4 INFORMATION SYSTEMS APPLICATIONS
 - H.5 INFORMATION INTERFACES AND PRESENTATION (e.g., HCI) (I.7)
 - H.m MISCELLANEOUS
- I. Computing Methodologies
 - I.0 GENERAL
 - I.1 SYMBOLIC AND ALGEBRAIC MANIPULATION Revised
 - I.2 ARTIFICIAL INTELLIGENCE
 - I.3 COMPUTER GRAPHICS
 - I.4 IMAGE PROCESSING AND COMPUTER VISION
 Revised

As well as Mathematics subjects

2000 Mathematics Subject Classification

Search the MSC || Browse the MSC || Entire MSC2000 in PDF || How to Use the MSC

The Mathematics Subject Classification (MSC) is used to categorize items covered by the two reviewing databases, Mathematical Reviews (MR) and Zentralblatt MATH (Zbl). The MSC is broken down into over 5,000 two-, three-, and five-digit classifications, each corresponding to a discipline of mathematics (e.g., 11 = Number theory, 11B = Sequences and sets; 11B05 = Density, gaps, topology).

The current classification system, 2000 Mathematics Subject Classification (MSC2000), is a revision of the 1991 Mathematics Subject Classification, which is the classification that has been used by MR and Zbl since the beginning of 1991. MSC2000 is the result of a collaborative effort by the editors of MR and Zbl to update the classification. The editors acknowledge the many helpful suggestions from the mathematical community during the revision process.

Changes at the 2-digit level

Conversion Tables

Browse the $2000\ \mathrm{MSC}$

00-xx	General
01-xx	History and biography [See also the classification number -03 in the other sections]
03-xx	Mathematical logic and foundations
04-xx	This section has been deleted (For set theory see 03Exx)
05-xx	Combinatorics (For finite fields, see 11Txx)
06-xx	Order, lattices, ordered algebraic structures [See also 18B35]
08-xx	General algebraic systems
11-xx	Number theory
12-xx	Field theory and polynomials
13-xx	Commutative rings and algebras
14-xx	Algebraic geometry
15-xx	Linear and multilinear algebra; matrix theory
16-xx	Associative rings and algebras (For the commutative case, see 13-xx)
17-xx	Nonassociative rings and algebras
18-xx	Category theory; homological algebra (For commutative rings see 13Dxx, for associative rings 16Exx, for groups
	20Jxx, for topological groups and related structures 57Txx; see also 55Nxx and 55Uxx for algebraic topology}
19-xx	\$K\$-theory [See also 16E20, 18F25]
20-xx	Group theory and generalizations
22-xx	Topological groups, Lie groups (For transformation groups, see 54H15, 57Sxx, 58-xx. For abstract harmonic
17 NO.	analysis, see 43-xx}
26-xx	Real functions [See also 54C30]
28-xx	Measure and integration (For analysis on manifolds, see 58-xx)
30-xx	Functions of a complex variable (For analysis on manifolds, see 58-xx)
31-xx	Potential theory (For probabilistic potential theory, see 60J45)
32-xx	Several complex variables and analytic spaces (For infinite-dimensional holomorphy, see 46G20, 58B12)
33-xx	Special functions (33-xx deals with the properties of functions as functions) (For orthogonal functions, see 42Cxx,
18 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -	for aspects of combinatorics, see 05Axx; for number-theoretic aspects, see 11-xx; for representation theory, see
	22Exx}
34-xx	Ordinary differential equations
35-xx	Partial differential equations
37-xx	Dynamical systems and ergodic theory [See also 26A18, 28Dxx, 34Cxx, 34Dxx, 35Bxx, 46Lxx, 58Jxx, 70-xx]
39-xx	Difference and functional equations
40-xx	Sequences, series, summability

But for Bioinformatics (and Life Sciences in general) is not existing any shared classification schema of the domain. And life scientists like taxonomies...

Biochemistry (Moscow), Vol. 69, No. 12, 2004, pp. 1403-1406. Copyright © 2002 by CELL PRESS.

= DISCUSSIONS =

Can a Biologist Fix a Radio? or, What I Learned while Studying Apoptosis

Y. Lazebnik

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; E-mail: lazebnik@cshl.org

This article by Yu. Lazebnik, "Can a Biologist Fix a Radio? — or, What I Learned while Studying Apoptosis" has already been published in English (*Cancer Cell*, 2002, **2**, 179-182) and in Russian (*Uspekhi Gerontologii*, 2003, No. 12, 166-171). Nevertheless, we have undertaken its secondary publication in our journal for two reasons: first, our journal has different readers, and, second, the great significance of this manifest of Yuri Lazebnik. The author in bright and clever form shows the emerging necessity to create formalized language designed to describe complicated systems of regulation of biochemical processes in living cells. The article is published with permission of *Cancer Cell* and *Uspekhi Gerontologii*.

Editor-in-Chief of Biokhimiya/Biochemistry (Moscow) V. P. Skulachev

The classification introduced for articles of "Oxford's Bioinformatics" in 2005

Our proposal: Resourceomes

A Resourceomes permits to arrange in an intuitive (for humans) and machine-understandable (for SW) manner the perceived structure of a domain and to "stick" resources (with their semantic relationships) to concepts of the domain

Source vs. Resource Ontology

Adam Mathes REC 2396 (REC 2396) Knowledge Representation and Formal Ontology - LIS590KR EC. Madden HERE Standing I Have an annual reasons to the Party of the second se Graduate School of Library and Information Science University of Illinois Urbana-Champaign May 2005

What is a Resource?

The notion of a resource is fundamental in current networked information used often, specifically in relation the World Wide Web and the W3C such as Resource Description Framework (RDF), Uniform Reso relatively simple term masks an exceptional amount of amb

What is a resource, exactly, in the context of electronic docu developed here attempts to explicate what a resource is and its

Although there is a stated definition of a resource in the URI RFC it is

PEC 2396 - Uniform Ecource Identifiers (CRI): Centeric Symax A resource can be anything that has identity. Familiar examples inclu an image, a service (e.g., "today's weather report for Los Angeles"), and a collection of other resources. Not all resources are network "retrievable"; e.g., human beings, corporations, and bound books in a library can also be considered resources. The resource is the conceptual mapping to an entity or set of entities, not necessarily the entity which corresponds to that mapping at any particular instance in time. Thus, a resource can remain constant even when its content-the entities to which it currently corresponds-changes over time, provided that the conceptual mapping is not changed in the process." [Berners-Lee]

This is just our first prototype of resource ontology

<u>-</u> [🔤 🗂 Artifact
	— 🥅 🗋 Project
	👇 🥅 🚍 Event
	— 🔲 🗋 Conference
	🖵 🔲 🗋 Meeting
	🕈 🔲 🚍 Specification
	- 🗔 🗋 RFC
	🗛 🔚 🚍 Standard
	🖵 🔲 🗋 Metadata_Standard
	👇 🔚 🚍 Informatic_Artifact
	👇 🥅 🗂 Computational_Resource
	👇 🥅 🗂 Program
	🔶 🥅 🗂 Web-Based_Program
	🗕 🔲 🗋 Web_Service
	🗕 🥅 🗋 Stand-Alone_Program
	👇 🔲 🚍 Informatic_Artifact_for_Data_Representation
	👇 🔲 🚍 Informatic_Artifact_for_Information_Representation
	🖕 🔲 🚍 Informatic_Artifact_for_Knowledge_Representation
	🕶 🥅 🗂 Methodology
	🔶 🔚 🚍 Literature_Resource

Examples of semantic relationships between resources

Better this representation...

a)

A web-based semantic browser for Resourceomes

The first prototype of our browser

Passing with the mouse over the icons you can see a description and the URI of the resource

Many open issues:

. . .

- Annotation of resources (manual, semi-automatic, automatic)
- Representation of the domain (ontology, concept maps, topic maps, SKOS?)
- Ranking of resources (page rank, judgments)
- Status of resources (agents checking them)
- Graph visualization? (GRAPPA Graphviz)
- Not only browser but also visual editor (GrOWL?)

Acknowledgment

www.litbio.org

This work is supported by the Italian Investment Funds for Basic Research (FIRB) project "Laboratory of Interdisciplinary Technologies in Bioinformatics" (LITBIO).

Hoping that the bioinformatics community could soon say

"Houston, We've Had a Problem"

Thank you for your attention!