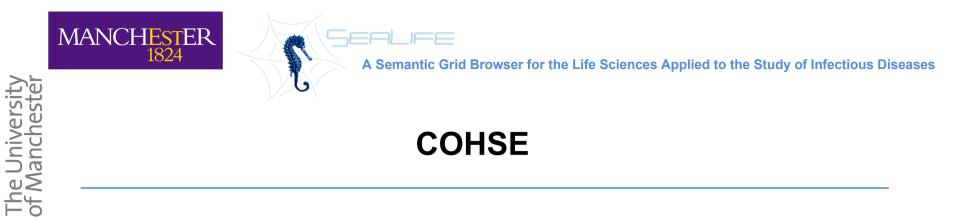


A Semantic Grid Browser for the Life Sciences Applied to the Study of Infectious Diseases

Document Navigation: Ontologies or Knowledge Organisation Systems

Simon Jupp - NETTAB 2007 BioHealth Informatics Group University of Manchester, UK



Introduction

Bioinformatics relies heavily on web for IR.

Ontologies are being developed as background knowledge to drive the Semantic Web.

Message: Formal ontologies are not the only knowledge artefact needed, artefacts with weaker semantics have their role and are the best solution in some circumstances

Navigation via Hypertext is a mainstay of WWW

Problem: Links are typically embedded to Web pages; hard-coding, format restrictions, ownership, legacy resources, maintenance, Unary targets etc.

Which model is best suited for Navigation?

Strict semantics like OWL or something with weaker semantics like SKOS.

Is ontological formality a help or a hindrances?

MANCHESTER

1824

A Semantic Grid Browser for the Life Sciences Applied to the Study of Infectious Diseases

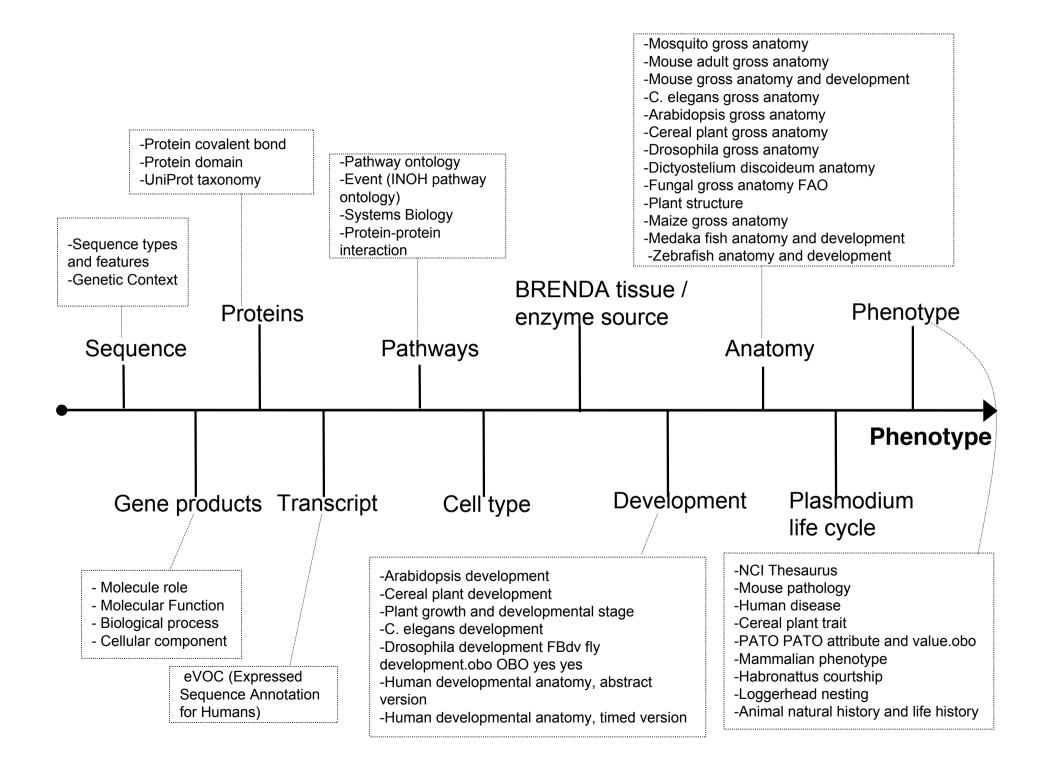
SeaLife use case - study of disease

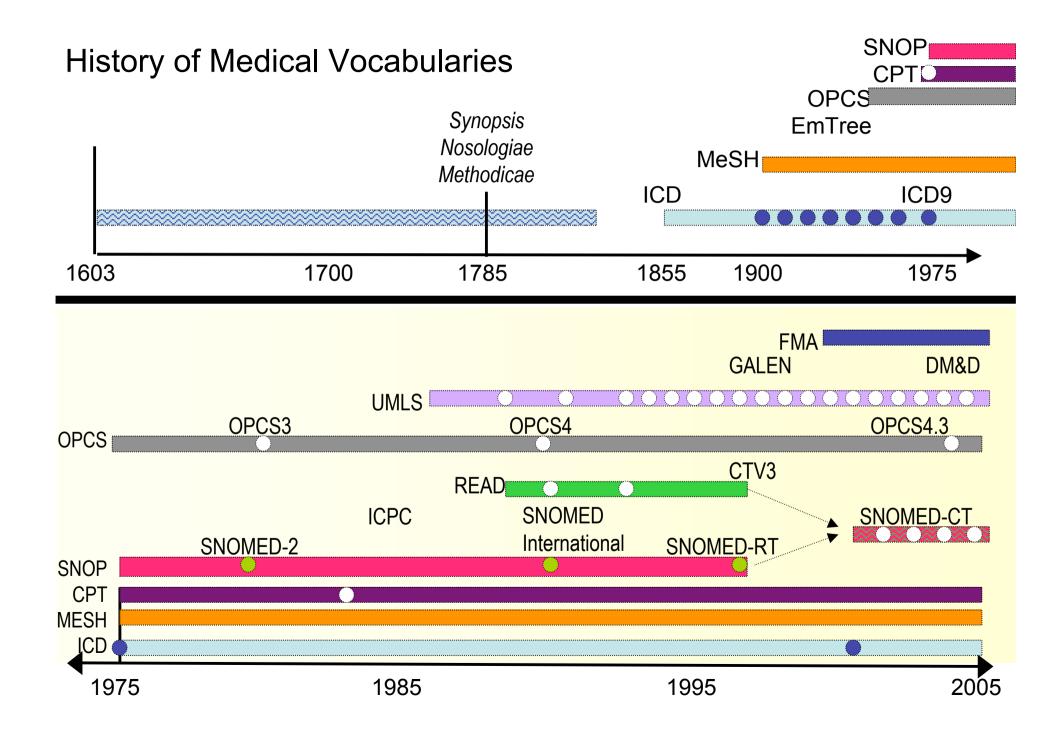
NeLI: National electronic Library of Infection portal. Range of users but few links.

Given a document about Tuberculosis, where would users want to navigate to next?

User Group	Question	Targets
Family Doctor	Tuberculosis drugs and side	British National Formulary (BNF)
(GP)	effects?	
Clinicians	Tuberculosis treatments	Public Health Observatories
	guidelines?	(PHO)
Molecular	Drug resistant tuberculosis	PubMed
Biologists	species?	
General Public	What is tuberculosis?	Health Protection Agency (HPA)
		or the NHS direct online website.

http://www.neli.org.uk




A Semantic Grid Browser for the Life Sciences Applied to the Study of Infectious Diseases

SeaLife background knowledge

To cover molecular biology through to medicine we need a large knowledge artefact to serve as background knowledge for SeaLife. This artefact must support sensible navigation between documents on the web.

Luckily...

MANCHESTER

A Semantic Grid Browser for the Life Sciences Applied to the Study of Infectious Diseases

What do we need for navigation?

The bio-medical domain is rich in vocabularies and ontologies.

Large lexical resource including textual definitions and synonyms

There is a varying degree of semantics, expressivity and formality in these vocabularies (e.g. MeSH) and ontologies (e.g FMA). Most include some form of hierarchy. Hierarchies are well suited for driving navigation.

Question: Do we want strict sub/super class relationships? Or, do we want looser notations such as broader/narrower?

A Semantic G

A Semantic Grid Browser for the Life Sciences Applied to the Study of Infectious Diseases

Ontology or Vocabulary?

Initial approach to COHSE and SeaLife was to represent everything in OWL

The strict semantics of OWL do not always lend themselves to sensible navigation, conversion from vocabularies to OWL are difficult. It's hard to model some things in OWL (e.g. sometimes/always, probabilities etc)

MeSH OBO/OWL
Head <-- Ear
<-- Nose
Accident <-- Traffic Accident
<-- Accident Prevention

SKOS (Simple Knowledge Organisation System)

Purpose: Subject Metadata and information retrieval

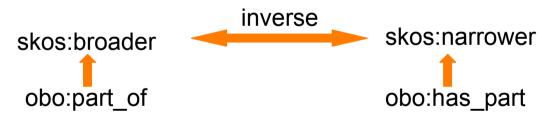
e.g. This document is about tuberculosis

Model for representing concept schemes, thesauri, classification system, taxonomies etc...

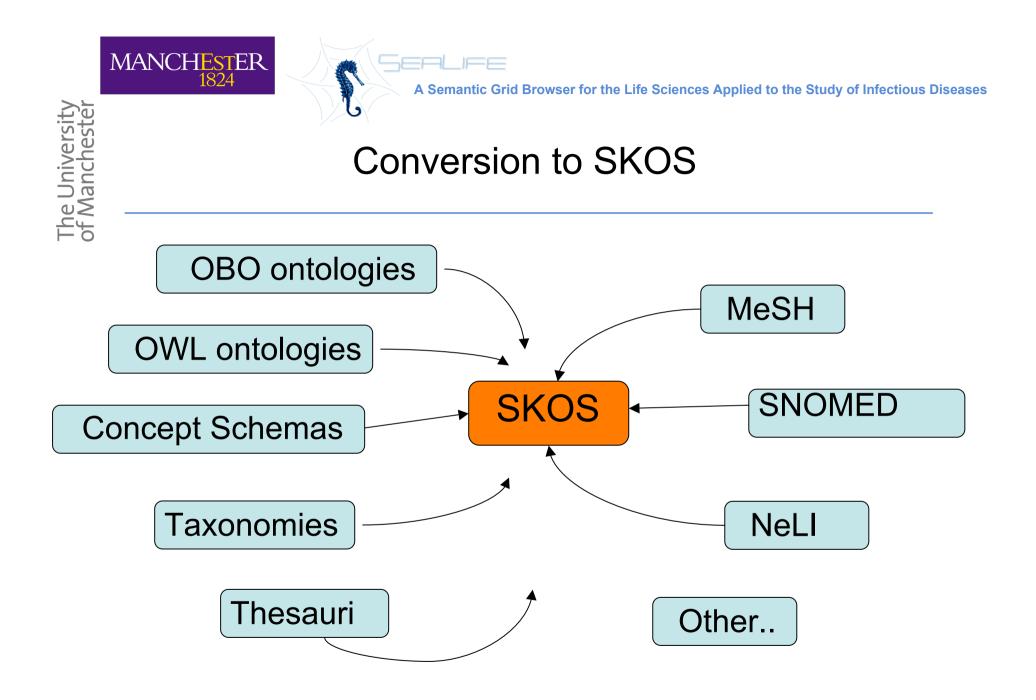
Importantly for us, the semantics are more suitable for document navigation

e.g. broader, narrower, related.

RDF/XML representation - Semantic Web friendly.


http://www.w3.org/2004/02/skos/

Grid Browser for the Life Sciences Applied to the Study of Infectious Diseases



- relationship:part_of --> skos:broader (e.g. finger part_of hand)
- relationship:contains --> skos:narrower (e.g. skull contains brain)
- relationship:causes --> skos:related (e.g. PolioVirus causes PolioDisease)

Sub properties:

Leaves us open to migration back to OWL

A Semantic

A Semantic Grid Browser for the Life Sciences Applied to the Study of Infectious Diseases

Advantage of this approach

For a given concept e.g. "Polio Virus", we can query multiple resources and bring related concepts together.

Source	Terms found	SKOS relation to "Poliovirus"
MeSH	Brunhilde Virus	skos:altTerm
Disease Ontology	Spinal cord disease	skos:broaderThan
	Postpoliomyelitis	skos:narrowerThan
	Syndrome	
SNOMED	Microorganism	skos:broaderThan
	Enterovirus	skos:broaderThan

- Rapid (and cheap!) generation of knowledge artefact
- Take advantage efforts in multiple biomedical communities
- We don't have to make any strong ontological distinctions

The University of Manchester

Disadvantage of this approach

Trade off: Lose the inferential power when querying a knowledge resource

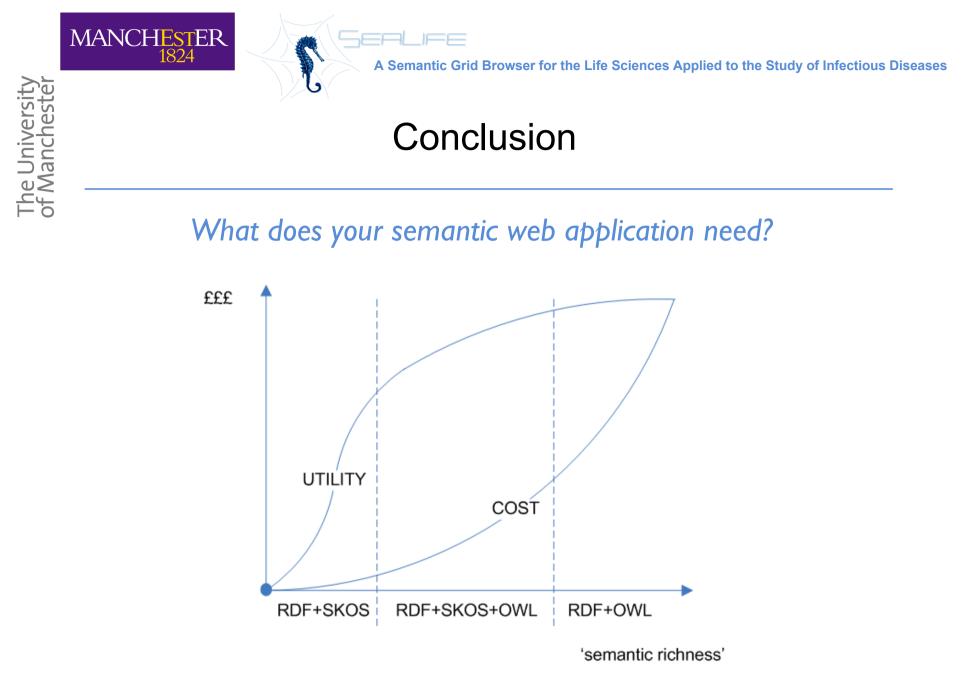
Unwanted concepts & relationship - especially from OWL conversion e.g. 'Physical Entity', 'Continuant' etc....

Linking overload!

Inability to do inconsistency checking

Potentially large redundancy in our knowledge base

Maintenance and scalability (>1000000 concepts) - especially for dynamic hyperlinking. A Semantic Grid Browser for the Life Sciences Applied to the Study of Infectious Diseases


The University of Manchester

MANCHESTER 1824

Plug for Manchester's SKOS plug-in - Protégé 4

SKOS Hierarchy: Central Nervous System Infection	Individual Annotations: Central Nervous System Infection		
♦ Sharps	Annotations 🕒		
Surgical prophylaxis			
Treatment			
▼ ♦ Vaccination			
Childhood vaccinations			
Travel vaccinations			
Viral Vaccination			
Influenza Vaccination			
Polio Vaccination			
Ward closure			
🔶 Waste disposal / management	Property assertions: Central Nervous System Infection		
SYSTEMS AFFECTED	Object property assertions		
Cardiovascular	inScheme conceptSchema	80	
Circulatory		80	
Digestive	broader Nervous system	88	
Endocrine			
Hepatobiliary	Data property assertions 🕘		
Immune system	scopeNote "Central Nervous System Infection"@en		
Integumentary	prefLabel "Central Nervous System Infection"@en	80	
♦ Localised	hiddenLabel "neli:0000015"	80	
Lymphatic			
Muscular	Negative object property assertions 🕞		
Nervous system			
Central Nervous System Infection	Negative data property assertions ∓		
Renal			
Reproductive Tract			
Respiratory Tract			
♦ Sensory ♦ Skeletal			
Systemic			
Urinary Tract			
► ♦ TRANSMISSION			
TYPE OF EVIDENCE			
neli			
♦ null			
Individuals SKOS Hierarchy			

- Instance hierarchy viewer
- OBO or OWL --> SKOS wizards
- Various rendering options

Taken from Alistair Miles, XMLUK: "Ontologies and XML" 2005, slide

Acknowledgments

Manchester

Robert Stevens

Sean Bechhofer

Yeliz Yesilada

NeLI

Patty Kostkova

Other

COHSE developers

SeaLife project

Thank you.