M.Fato – I.Porro – E.Giunchiglia – L.Vassalli

On the integration of biomedical knowledge bases: problems and solutions

Luca Vassalli

lucanl@star.dist.unige.it Systems and Technologies for Automated Reasoning laboratory, DIST, University of Genoa

Outline

- A collaboration between:
 - Systems and Technologies for Automated Reasoning laboratory, DIST, University of Genoa
 - Bioengineering and Bioimages laboratory (Biolab), DIST, University of Genoa
- Brief introduction to the problem
- Our research goal
- The different possible solutions
- BioGIS (Bioinformatic GAV Integration System)
 - Rewriting rules
 - Front end
 - Internal structure
- Conclusions

Data Sources Integration

"The user should be able to focus on what he is looking for rather than thinking how to obtain it" (A. Levy)

Issues:

- Overlapping and mismatching
- Syntactic difference between sources
- Different layout of the sources (chart based, text based, etc.)
- Lacking of a common exchange format
- Unknown data source internal structure
- Internet is not a stable environment
- Sometimes hard identifying the same element in different systems

BioGIS

The goal:
Integration of the human metabolic pathways
The sources:
KEGG (M. Kanehisa et al., 2002)
Reactome (G. Joshi-Tope et al., 2005)
The user:
Biolab portal (http://grid.bio.dist.unige.it)

Modelling the data sources

Global as view (Garcia-Molina et al., 1997)

- Two data sources:
 - DB1 (Pathway_Name, Pathway_ID1, Description, Molecule)
 - DB2 (Pathway_ID2, Pathway_Name, Organism)

Mediated schema relations:

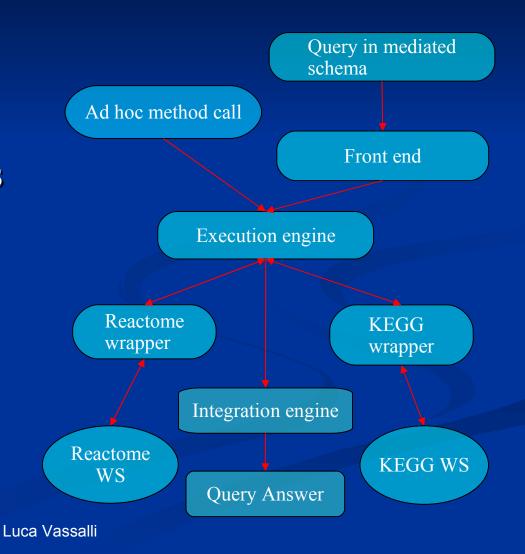
- Pathway (Pathway_Name, Description, Organism) :-DB1(Pathway_Name,Pathway_ID1, Description, Molecule), DB2(Pathway_ID2, Pathway_Name, Organism)
- Connection_Molecule (Pathway_Name, Molecule) :-DB1(Pathway_Name,Pathway_ID1, Description, Molecule)

Modelling the data sources

 Local as view (O. Duschka et al., 1997)
 DB1 (Pathway_Name, Pathway_ID1, Description, Molecule) : Pathway (Pathway_Name, Description, Organism,

Pathway_ID1, Pathway_ID2), Connection_Molecule (Pathway_Name, Molecule, Class), Class = "genes"

 DB2 (Pathway_ID2, Pathway_Name, Organism) :-Pathway (Pathway_Name, Description, Organism, *Pathway_ID1, Pathway_ID2*), Organism = "homo sapient"


A Comparison

GAV

- Does not require containment checking (fast and reliable)
- Somehow awkward modelling the system
- Difficult to extend
- LAV
 - Easy to extend
 - Useless details in the model of the system
 - Requires containment checking (slow)
 - The algorithm may be even intractable
- GLAV (M Friedman et al., 1999)
 - Same complexity than LAV
 - Solved some drawbacks in the modelling phase

BioGIS

Front end or ad hoc methods Execution engine which iteratively calls the wrappers A wrapper for each data source Integration engine

The information extracted

Two ad hoc family of methods:
getMoleculesForPathway
getPathwayForMolecules
Three global schema relations:
Pathway
Connection_Molecule
Reaction

Front End

Queries have to follow a precise grammar

- PATHWAY { GOTerm = " alanine metabolism " } END
- PATHWAY { ReactomePathwayID = "109606 " }, CONNECTION_MOLECULE { ReactomePathwayID = " 109606 " } END
- CONNECTION_MOLECULE { UniqueID = " Q92934 " } END

Internal structure

Execution engine:

- Simple unfolding of the queries according to the GAV methodology
- Ad hoc methods: concurrent threads which query in parallel the wrappers

• Wrappers:

 A class for every different data source relation. The information is retrieved from the sources and structured into objects.

Integration engine:

- Pathways merged using the pathway names and the Gene Ontology terms
- Molecules merged using the UniProt and COMPOUND ids

Performances

- Vary according to several factors:
 - The number of hits of the query
 - "Retrieve all the genes that take part to a pathway which matches the keyword "pyruvate" ": around 65 hits 1 minute
 - "Retrieve all the genes that take part to a pathway which matches the keyword "metabolism" ": thousands of hits – half an hour
 - The state of the Reactome cache
 - The network latency
- Better to be used in a chain of web services than as a standalone service available through a browser

Conclusions

GAV approach:

- Yet possible easy extensions of the wrappers thanks to the modelling of the same knowledge base as more relations
- Good approach in case of few stable sources and limited extension
- Web service approach
- Future work:
 - Extension to allow a more expressive grammar
 - Extension to another data source (BioCyc)
 - Extension to take advance also XML format together with web services

Thanks for your kind attention

Any question?

Contact me: lucanl@star.dist.unige.it Other contacts: E. Giunchiglia: giunchiglia@unige.it I. Porro: pivan@dist.unige.it M. Fato: fantomas@dist.unige.it

The grammar

•	goal	\rightarrow relations END
•	relations	\rightarrow relation rel'
•	Rel'	\rightarrow , relation rel
		8
	relation	\rightarrow namerelation { bindings }
	Namerelation	\rightarrow PATHWAY
		CONNECTION MOLECULE
		REACTION
	bindings	\rightarrow binding bin'
	bin'	\rightarrow , binding bin'
		8
	binding	\rightarrow string = " string "
	string	\rightarrow [azA-Z0-9[]+, ()-]

13/06/2007

The global schema: Pathway

- Pathway (PathName, KEGGPathwayID, ReactomePathwayID, Description, Organism, GOTerm) :-KEGG1 (PathName, KEGGPathwayID, Organism), Reactome1 (PathName, ReactomePathwayID, Description, Organism, GOTerm)
- Pathway (PathName, KEGGPathwayID, ReactomePathwayID, Description, Organism, GOTerm) :-KEGG1 (PathName, KEGGPathwayID, Organism),
- Pathway (PathName, KEGGPathwayID, ReactomePathwayID, Description, Organism, GOTerm) :-Reactome1 (PathName, ReactomePathwayID, Description, Organism, GOTerm)

The global schema: Connection_Molecule

 Connection_Molecule (ReactomePathwayID, KEGGPathwayID, ReactomeMoleculeID, MoleculeNameR, KEGGMoleculeID, MoleculeNameK, UniqueID, Database, Definition, Class, Description) :-Reactome3 (ReactomePathwayID, ReactomeMoleculeID, MoleculeNameR, UniqueID, Database), KEGG2 (KEGGMoleculeID, MoleculeNameK, UniqueID, Definition, Class, Description), KEGG3 (KEGGPathwayID, KEGGMoleculeID, Class)

- Connection_Molecule (ReactomePathwayID, KEGGPathwayID, ReactomeMoleculeID, MoleculeNameR, KEGGMoleculeID, MoleculeNameK, UniqueID, Database, Definition, Class, Description) :-Reactome3 (ReactomePathwayID, ReactomeMoleculeID, MoleculeNameR, UniqueID, Database)
- Connection_Molecule (ReactomePathwayID, KEGGPathwayID, ReactomeMoleculeID, MoleculeNameR, KEGGMoleculeID, MoleculeNameK, UniqueID, Database, Definition, Class, Description) :-KEGG2 (KEGGMoleculeID, MoleculeNameK, UniqueID, Definition, Class, Description), KEGG3 (KEGGPathwayID, KEGGMoleculeID, Class)

The global schema: Reaction

Reaction (PathName, ReactomePathwayID, Reaction) :-Reactome1 (PathName, ReactomePathwayID, Description, Organism, GOTerm), Reactome2 (ReactomePathwayID, Reaction)