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Motivation

Metabolic engineering requires mathematical models for accurate design
purposes

Aim: overproducing desired substances

Problem: identify the interventions needed to produce the metabolite of
interest

Tools: optimisation, sensitivity, robustness, identifiability
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Obstacles

Large number of reactions occurring in the cellular metabolism

Large size of the solution space
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Idea

We use a multi-objective optimisation algorithm to seek the manipulation
that optimise multiple cellular functions

The idea is to use and improve the Pareto optimal solutions

Pareto optimality is important to obtain not only a wide range of Pareto
optimal solutions, but also the best trade-off design
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Outline

Organelle models:

Chloroplast model, 31 ODEs + equations for conserved quantities [Zhu et
al., 2007]

Mitochondrion model, 73 DAEs [Bazil et al., 2010]

Hydrogenosome model, Flux Balance Analysis [Angione et al., submitted]

Common framework

1 Sensitivity analysis

2 Multi-objective optimisation

3 Robustness analysis

4 Identifiability analysis
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Why a common framework for organelles?

All extant eukaryotes are descended from an ancestor that had a
mitochondrion

The evolutionary history of chloroplasts and mitochondria are intertwined

The possibility of multi-objective optimisation related to the different tasks
(e.g. maximising the ATP and the heat)

Identify and cross-compare the most important components

Assess the fragileness of the multi-optimised metabolic networks using the
robustness analysis

Claudio Angione
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The common framework
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Multi-objective optimisation

Let f be the vector of r objective functions to optimise in the objective space

f1 

f2 

f(y*) 

Solution of a multi-objective problem: set of points called Pareto front

Represents the best trade-off between two or more requirements

A point y∗ in the solution space is Pareto optimal if there does not exist a
point y such that f (y) dominates f (y∗), i.e. fi (y) > fi (y∗), ∀i = 1, ..., r
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Genetic design through multi-objective optimisation (GDMO) [Costanza et
al. Bioinformatics, 2012]

Seek an optimal initial array of concentrations through an evolutionary algorithm
inspired by NSGA-II [Deb et al., 2002]

1 generate initial population P(t)

2 evaluate the fitness of each individual in P(t)

3 while (not termination condition) do

1 select parents, Pa(t) from P(t) based on their fitness in P(t)

2 apply crossover to create offspring from parents: Pa(t) -> O(t)

3 apply mutation to the offspring: O(t) -> O’(t)

4 evaluate the fitness of each individual in O’(t)

5 select population P(t+1) from current offspring O’(t) and parents Pa(t)
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Model Reduction and Sensitivity Analysis
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Multi-objective Optimisation and Robustness Analysis
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Move the front towards the best Pareto-front

Maximise metabolites (e.g. ATP vs NADH)

Choose Pareto-optimal organelle

Robustness of the Pareto optimal organelle

(a) Maintains its functionality if it transits
through a new steady state [Kitano, 2007]

(b) Robustness to change of initial conditions
[Gunawardena, 2009]

(c) Percentage of perturbation trials such that
the output remains in a given interval
[Stracquadanio & Nicosia, 2011]

Claudio Angione
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ARD Sensitivity and Reduction in the Mitochondrion Metamodel
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Polynomial surrogate models

1028 samples in the parameter space

Second order model: a0 + cᵀp + pᵀAp

p = array of parameters

Most sensitive parameters: Hexokinase max rate (HK), F1F0 ATP synthase
activity

Low values of HK: changes in F1F0 have little effect on the ATP production

High values of HK: the mitochondrion is highly sensitive to variations of F1F0
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Multi-objective Optimisation in the Chloroplast Model
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Sensitive domain: 11 most sensitive enzymes

Multi-objective optimisation in the “sensitive domain” (x ∈ R11)

The other 12 enzymes kept at their nominal value

Goal: Higher CO2 uptake employing less nitrogen

Absorbing more CO2 while consuming less “leaf-fuel”

Find all those sensitive enzyme concentration vectors x̂ = (c1, c2, . . . , c11) such
that the resulting CO2 uptake function is maximised and the nitrogen
consumption is minimised. This renders the metabolism cycle more efficient.

max
x̂∈R11

(f1(x̂),−f2(x̂))T

f1 = CO2 uptake, f2 = nitrogen consumption
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Multi-objective Optimisation in the Mitochondrion Model
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Multi-objective Optimisation in the Hydrogenosome Model
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Robustness Analysis

Assess the ability of a system to preserve its behaviour despite internal or
external perturbations

Perturbation γ (Ψ, σ): applies a stochastic noise σ to the system Ψ

Generate a set T of trial samples τ = γ (Ψ, σ)

An element τ ∈ T is said to be robust to the perturbation [Stracquadanio &
Nicosia, 2011], due to stochastic noise σ, for a given property (or metric) φ, if:

ρ (Ψ, τ, φ, ε) =

{
1 if |φ (Ψ)− φ (τ) | ≤ ε
0 otherwise,

where Ψ is the reference system, ε is a robustness threshold.

Robustness of a system Ψ: the percentage of robust trials

Γ (Ψ,T , φ, ε) =

∑
τ∈T ρ (Ψ, τ, φ, ε)

|T | .
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Robustness of Enzymes in Natural Chloroplast

Figure: The chloroplast is robust to perturbations of the enzyme concentration if the CO2 uptake rate
is close to the nominal value (15.48µmol/m2s) in the majority of the perturbation trials.
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| Angione, Carapezza, Costanza, Lió, Nicosia Computer Laboratory, University of Cambridge (UK)

Nettab 2012
| 17



Rational Design of Organelle Compartments in Cells

Identifiability Analysis in Chloroplast
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Network of Organelles

Systems composed of different species living and interacting in the same
organism

Design, analyse and optimise the “global” metabolism

Optimise two or more objectives in different organelles simultaneously

Highlight the complementarity of different metabolisms

Example

Mitochondria and chloroplasts are (usually) both found in plants

Part of the same functional pipeline

Starting from CO2, the photosynthesis in the chloroplast creates glucose
that enters the mitochondrion to create ATP
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Evolution through Pareto fronts
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The evolution of a Pareto-front can highlight the benefits of an engulfment
and subsequent compartmentalisation

Pareto-optimal point before the engulfments outperformed by the aggregate
Pareto-optimal point.
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Conclusion

1 Pareto fronts combined with sensitivity, robustness and identifiability

2 Understand the steps of the cellular evolution and the engulfments and
specialisation of organelles

3 In silico design to explore the reaction network for the solutions that optimise
two or more objectives simultaneously

4 Comprehensive insight into the energy balance in the cell

5 Possible explanation of evolution and compartmentalisation
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