Reducing technical
variability and bias In
RNA-seq data
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MIARNElel Methodology

RNA-Seq is a recent methodology (Nagalakshmi, Science 2008) for
transcriptome profiling that is based on Next-Generation Sequencing

Nat Rev Genet. 2009
NEWS AND VIEWS|  widely adopted in
quantitative transcriptomics

The beginning of the end for and seen as a valuable
- 5 alternative to microarrays
microarrays:?

S
Jay Shendure Nat Methods. 2008

PERSPECTIVES

INNOVATION

RNA-Seq: a revolutionary tool for
transcriptomics

Zhong Wang, Mark Gerstein and Michael Snyder
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transcriptome dynamics across
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RNA-seq [...] can capture

different tissues or conditions
without sophisticated
normalization of data sets.

- Wang, Nat Methods. 2008
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Read coverage is not uniform
along genes/transcripts

Different samples can be
sequenced at different
sequencing depths

Longer genes are more likely to
have higher counts

Most of reads arise from a
restricted subset of highly
expressed genes
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Definition of an alternative approach for
computing counts

Assessement of bias with standard and novel
approach

Fvaluation of effects on guantification anad
differential expression analysis

Conclusions and future developments
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» Definition of an alternative approach for
computing counts



NEWaETolelgekldal M axcounts

« Consider the reads aligned to an exon
« Foreach exon i in sample j

Njiy, are the number of reads covering exon base p

* maxcounts are computed as the maximum of per-base counts:

Mj; = max(Njip )
Methods

Reads mapped on reference genomes with TopHat, not allowing multiple alignments
(=g 1 option)

Counts (totcounts) and per-base counts computed with bedtools (Quinlan, 2010)
maxcounts computed with custom scripts (C++ and Perl)
Differences in sequencing depths corrected via TMM (Robinson, 2010)



Outline

e Assessment of bias with standard and novel
approach



log-counts

Data set: Griffith, 2010

N exon length

Smoothed scatter plot of counts vs. exon length (log-log)
Cubic-spline fit of mean log-counts, bins of 100 exons each
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Length bias also at
exon level

RPKMs overcorrect

maxcounts strongly
reduce length bias




@el¥aly Jistribution across exons

2 Data set: Griffith, 2010
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elREIRIes] technical replicates

Variance vs. mean of log-counts/RPKMs across technical replicates
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maxcounts' variance is always lower than fotcounts' variance

RPKMs' variance depends on data set
Assessment on other data sets




Outline

» Evaluation of effects on guantification anad
differential expression analysis



OEINileEltlelal spike-in RNAS

Data set Jiang, 2011 Spike-in RNAs (ERCC Consortium)

* Single-isoforms
« Known sequence and concentration
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» All measures have high concordance with concentrations
 Transcripts length 270-2000 nt (performance on shorter transcripts?)



Data set: Griffith, 2010

DE analysis with edgeR (Robinson, 2010) - log-fold-changes (logFC)
Negative Binomial distribution of data required (no RPKMs)
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RMSD
Root-mean-square
deviation > difference
between logFC predicted
from maxcounts or

totcounts and from gRT-
PCR (gold-standard)

RMSD(0) = |E(6 — 6)?

maxcounts have a lower RMSD = higher concordance with gRT-PCR
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 Conclusions and future developments



elgld NNy & future developments

count tech. spike-in DE
distrib.  variance  quant. analysis
totcounts ~ ~ B n n
(std approach)
RPKM + + + ++
maxcounts + + + + + ++ ++

Work in progress and future developments

* Benchmark on more data sets (biological replicates, spike-in RNAS)

» Use other DE methods downstream

» Aggregate exon /maxcounts to have a measure at gene/transcript level
» Define a robust pre-processing pipeline to avoid artifacts

« Develop an alternative strategy for computing maxcounts and implement all
versions in a bedtools module
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