Network-based gene-disease prioritization using ProphNet

Víctor Martínez Gómez Carlos Cano Gutierrez Armando Blanco Morón

Department of Computer Science and Artificial Intelligence University of Granada Spain

November 2012

Prioritization

Prioritization aims to identify the most promising biological entities among a larger pool of candidates through integrative computational analysis of genomic data. These methods are based on guilt-by-association hypothesis.

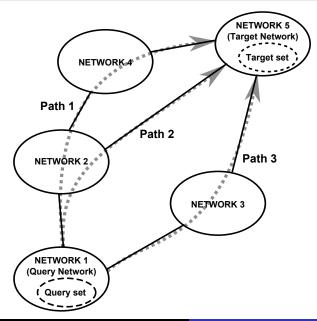
Guilt-by-association hypothesis

Biological entities showing a similar behaviour or sharing interactions/relations are more likely to belong to the same biological process, to be functionally related or to share molecular basis. Several prioritization strategies have been proposed:

- Filtering
- Text-mining
- Profiling
- Network-based

Advantages

- Better average performance than other approaches under similar conditions.
- Biological information is usually easy to representate as networks.

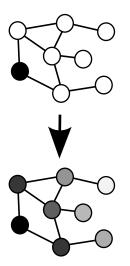

Disadvantages

- Difficulties integrating an arbitrary number of data sources since network-based methods usually are limited to 2 networks.
- Very specific methods that do not allow to perform different types of queries.

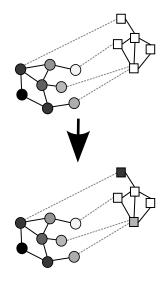
- **ProphNet** is a **network-based** prioritization method.
- Allows integration of an arbitrary number of networks.
- Outperforms recently proposed methods.
- Flexibility in queries allowing any prioritization task (e.g., genes-diseases or protein domains-genes).

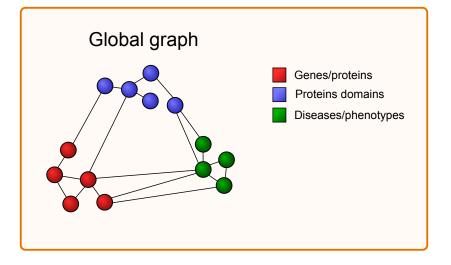
- Data of a particular type is represented by a network.
- Nodes represent biological entities (e.g., genes or diseases).
- Arcs represent interactions or relations.
- Networks are interconnected by other networks (e.g., gene-disease or domain-gene network) forming the **Global Graph**.

Definitions



More details about data representation


- Nodes have variable values which will be updated based on the degree of relation with the query or target sets.
- Query and Target set nodes are initially assigned with a value. The rest are assigned to zero.
- Arcs have **constant weights** representing the **strength** of the interaction or the relation.
- Networks are represented as adjacency matrices.
- A normalization step is performed in order to decrease the influence of each node degree.


Propagation operations

Propagation inside network

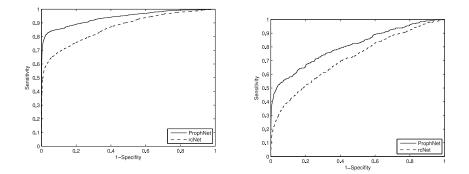
Propagation to the next network

Algorithm

ProphNet algorithm pseudocode

- 1: Query set values are propagated inside Query Network.
- 2: paths \leftarrow Compute all paths from Query to Target Net.
- 3: for each node e in Target Network do
- 4: Set node e as Target Set and propagate values inside Target Network
- 5: for each path in paths do
- 6: for each step in path do
- 7: Propagate from current network to next network
- 8: Propagate inside next network
- 9: end for
- 10: end for
- 11: $S_e \leftarrow \text{Correlate paths with Target Network values}$
- 12: end for
- 13: Sort S_{χ} decrementally to obtain prioritized list

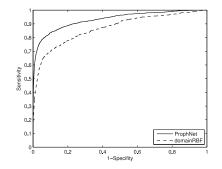
- ProphNet has been applied to obtain a prioritized list of genes for some diseases. Top ranked genes were related with query diseases.
- Three test have been performed to validate ProphNet.
- Against rcNet: LOO gene-disease prioritization and new associations prioritization.
- Against domainRBF: LOO domain-disease.
- Leave-one-out (LOO) test: Remove known A-B association, prioritize using A as Query Set and measure where B is ranked.


Tests against rcNet

LOO gene-disease validation

New gene-disease relation validation

16% AUC gain


13% AUC gain

Tests against domainRBF

LOO protein domain-disease validation

8% AUC gain

- We have proposed a method that **overcomes some limitations** in network-based methods.
- Data integration allows **better performance** than some state-of-the-art methods.
- Integration of other type of data has shown an increase in ProphNet performance (e.g., drugs or pathways).

Thanks for your attention!

Víctor Martínez Gómez University of Granada fvictor@correo.ugr.es