| Motivation and objectives E |                             | Background                     | Approach                 | Conclusions and further work |
|-----------------------------|-----------------------------|--------------------------------|--------------------------|------------------------------|
|                             |                             |                                |                          |                              |
|                             |                             |                                |                          |                              |
|                             |                             |                                |                          |                              |
|                             | DiGSNP: /                   | A web tool for                 | disease-gene             | e-SNP                        |
|                             |                             | prioritiza                     | tion                     |                              |
|                             |                             | prioritiza                     | LION                     |                              |
|                             |                             |                                |                          |                              |
|                             | C                           | armen Navarro <sup>1</sup> , ( | Carlos Cano <sup>1</sup> |                              |
|                             | Armande                     | o Blanco <sup>1</sup> , Fernan | do García-Alcalo         | de <sup>2</sup>              |
|                             | 1                           | University of Gra              | nada Spain               |                              |
|                             | <sup>2</sup> Max Planck Ins | stitute for Infectio           | n Biology, Berlin        | . Germany                    |
|                             |                             |                                |                          | ,                            |

November, 2012

Navarro C., Cano C., Blanco A., García-Alcalde, F.

| Motivation and objectives | Approach | Conclusions and further work |
|---------------------------|----------|------------------------------|
|                           |          |                              |
| Index                     |          |                              |

1 Motivation and objectives

2 Background

3 Approach

4 Conclusions and further work

Navarro C., Cano C., Blanco A., García-Alcalde, F.

# Motivation and Objectives

#### Context

- Next-Generation Sequencing: decreasing cost, raising throughput.
- Increasing availability of large amounts genome information.

#### Motivation

- Personalized medicine: improve diagnosis, disease prevention and treatment based on individual genomical information.
- Aim: Relate diseases individual genomical information.
- Required: Efficient computational tools that produce useful, summarized results.

# Motivation and Objectives

## Objectives

Support development of personalized medicine, by:

- Helping discover putative mutations and genes related to a query disease.
- Reducing search space to a reliable, manageable set of candidate genes and SNPs.
- Guiding further research on the **most promising** hypotheses.

Navarro C., Cano C., Blanco A., García-Alcalde, F.

#### Disease-gene prioritization

- Many methods for disease-gene prioritization.
- Most do not consider genome variations (i.e. SNPs, insertions, deletions).
- Variations are **cause** for many diseases.

Navarro C., Cano C., Blanco A., García-Alcalde, F.

# Background

## SNP prioritization

- Relating variations directly to diseases: gene relationship with disease is left out or implicit.
- Many require experimental evidence, such as GWAS studies:

difficult to start research on new or rare diseases.

- Most focused on coding regions.
- Important regulatory regions:

### SNPs altering TFBSs.

Navarro C., Cano C., Blanco A., García-Alcalde, F.

| Motivation and objectives | Background | Approach | Conclusions and further work |
|---------------------------|------------|----------|------------------------------|
|                           |            |          |                              |
| DigSNP                    |            |          |                              |

#### Features

- Relates diseases, genes and SNPs at once.
- Two-level hierarchy:
  - Disease-gene.
  - Gene-SNP.
- Disease-gene prioritization using **ProphNet**.
- SNP scoring with IntuitSNP intuitionistic approach.
- Gene-SNP relations: dbSNP.

Navarro C., Cano C., Blanco A., García-Alcalde, F.

# ProphNet

## Description

- Used for disease-gene prioritization.
- Network-based prioritization tool.
- Integrates data from an arbitrary set of sources.
- Prioritizes a Target Set based on how related this is to a Query Set.
- Used sources: OMIM, HPRD, DOMINE, InterDom, Pfam.

Navarro C., Cano C., Blanco A., García-Alcalde, F.

# IntuitSNP

### Description

- Calculation based on intuitionistic similarity score motif-sequence: SC<sub>intuit</sub>
- SNPs that drastically alter a motif's binding affinity:

# Top candidate regulatory SNPs.

- For each gene obtained in prioritized list:
  - Query dbSNP for SNPs in regulatory regions.
  - Obtain their IntuitSNP score.
  - Order them in descending order based on the difference between wild-type and mutated scores.

Navarro C., Cano C., Blanco A., García-Alcalde, F.

# **DiGSNP** workflow



Navarro C., Cano C., Blanco A., García-Alcalde, F.

#### Web tool

- DiGSNP is available at http://genome2.ugr.es/digsnp
- Efficient: Results within 2-3 minutes.
- Intuitive: Visually understandable results set.
- Cross-referenced with several information sources (e.g. dbSNP, Jaspar).

Navarro C., Cano C., Blanco A., García-Alcalde, F.

# Results

## Validation data

## Systematic validation difficult:

Lack of variations-genes-diseases resources for validation.

|                | putative rSNPs | # cited | % cited |
|----------------|----------------|---------|---------|
| dbSNP          | 576.440        | 3994    | 0,69    |
|                |                |         |         |
| HMGD (pub.)    | 576.440        | 1582    | 0,27    |
| HMGD (subscr.) | 576.440        | 2542    | 0,44    |

Navarro C., Cano C., Blanco A., García-Alcalde, F.

### i courto

#### Validation

Currently gathering a larger dataset to better validate results:

- dbSNP's medical references.
- HMGD public available citations.
- RegulomeDB: Recent curated database with regulatory information of SNPs.
- Preliminary results **consistent** with medical literature.

Navarro C., Cano C., Blanco A., García-Alcalde, F.

# Results for Breast Cancer

| Gene  | ProphNet score | SNP id      | Function | Motif     | Motif score |
|-------|----------------|-------------|----------|-----------|-------------|
| RAD51 | 0,527          | rs150213086 | UTR5     | C-MAF     | 0,335       |
|       |                | rs1801320   | UTR5     | Kid3      | 0,319       |
|       |                | rs183455067 | DWN500B  | Kid3      | 0,319       |
|       |                | rs184898629 | UP2K     | Kid3      | 0,319       |
|       |                | rs187471538 | UP2K     | Kid3      | 0,319       |
|       |                | rs7180135   | UTR3     | Kid3      | 0,319       |
| BRCA2 | 0,519          | rs145901536 | UP2K     | Kid3      | 0,319       |
|       |                | rs10492394  | UP2K     | ZNF333    | 0,300       |
|       |                | rs187284594 | UP2K     | ZNF333    | 0,300       |
|       |                | rs79681965  | DWN500B  | HMGIY     | 0,289       |
|       |                | rs185674638 | UTR3     | HMGIY     | 0,279       |
|       |                | rs55641815  | UTR5     | Churchill | 0,278       |
| BRCA1 | 0,452          | rs191995002 | DWN500B  | C-MAF     | 0,327       |
|       |                | rs148196794 | UTR5     | Kid3      | 0,319       |
|       |                | rs80356827  | UTR5     | C-MAF     | 0,294       |

Navarro C., Cano C., Blanco A., García-Alcalde, F.

- DiGSNP is helpful for early stage research.
- Suggestions made based on genomic information, motifs and binding affinity.
- No need for previous experimental results (i.e. GWAS, previous publications).
- Focus on regulatory variations.
- Useful tool as a start point to **boost further research**.

Navarro C., Cano C., Blanco A., García-Alcalde, F.

- Integrate coding variations.
- Influence of variation function class to score.
- User-defined SNP ranking.