

Julien Gobeill¹, Emilie Pasche², Douglas Teodoro², Anne-Lise Veuthey³, Patrick Ruch¹

- ¹ University of Applied Sciences, Information Sciences, Geneva
- ² Hospitals and University of Geneva, Geneva
- ³ Swiss-Prot group, Swiss Institute of Bioinformatics, Geneva

Answering Gene Ontology terms to proteomics questions by supervised macro reading in MEDLINE

Data deluge...

" What is the subcellular location of protein MEN1?"

"What molecular functions are affected by Ryanodine?"

Ontology-based search engines

Question Answering (EAGLi system)

Redundancy hypothesis: The number of associated/co-occurring answers dominate other dimensions

Best way for extracting GO terms from a set of abstracts? (1/3)

- Comparison based in two categorizers :
 - Thesaurus-Based (EAGL)
 - Competitive with MetaMap (Trieschnigg et al., 2009)
 - Compute lex. similarity between text and GO terms

- Machine Learning (GOCat)
 - k-NN
 - · Similarity between input text and already curated abstracts
 - KB derived from GOA: ~90'000 instances

Best way for extracting GO terms from a set of abstracts? (2/3)

- Two tasks :
 - Classical categorization (micro reading ~ biocuration)

Redundancy-based QA (macro reading)

Best way for extracting GO terms from a set of abstracts? (3/3)

- One benchmark for micro reading evaluation
 - 1'000 abstracts and GO descriptors from GOA

- Two benchmarks for macro reading evaluation
 - 50 questions derived from a set of biological databases:

What molecular functions are affected by [chemical]?

What cellular component is the location of [protein]?

Results

	micro reading task		macro reading task			
Benchmark	1'000 abstracts		CTD		UniProt	
Metrics	PO	R10	P0	R100	P0	R10
EAGL (Thesaurus Based)	.23	.16	.34	.15	.33	.45
GOCat (k-NN)	.43 (+86%)	.47 (+193%)	.69 (+102%)	.33 (+120%)	.58 (+75%)	.73 (+62%)

+ **75/120%** for k-NN (sup. learning)

→ Redundancy hypothesis insufficient
Why/Where is the power? Size does or does not matter?

Deluge is self-compensated ©

terms in GO: +150% / 2003

annotations with a PMID in GOA: + 100% / 2007

Performances of both categorizers across the time

Annotations in GOA for the top 5 most contributing source

Deluge is self-compensated ©

terms in GO: +150% / 2003

annotations with a PMID in GOA: + 100% / 2007

Categorization effectiveness moves faster than data

Annotations in GOA for the top 5 most contributing source

Magic!

The automatic categorization based on a PMID₂₀₀₇ performed in 2011 is of higher quality than a categorization on the same PMID₂₀₀₇ performed in 2007

No concept drift at all and even some improvement!

Example in toxicogenomics: CTD vs. GOCat

"What molecular functions are affected by Ryanodine?"

GOCat

GO Level	GO Term	
9	GO0005219 : ryanodine-sensitive calcium- release channel activity	✓
7	GO0015279 : calcium-release channel activity	√
7	GO0005262 : calcium channel activity	1
6	GO0022834 : ligand-gated channel activity	
6	GO0015276 : ligand-gated ion channel activity	
3	GO0005516 : calmodulin binding	1

Rank	GO Term
1.	GO0005515 : protein binding
√ 2.	GO0005219 : ryanodine-sensitive calcium- release channel activity
3.	GO0005245 : voltage-gated calcium channel activity
4.	GO0005509 : calcium ion binding
√ 5.	GO 0005262 : calcium channel activity
6.	GO0005102 : receptor binding
√ 7.	GO0005516 : calmodulin binding
8.	GO0005388 calcium-transporting ATPase activity
√ 9.	GO0015279 : calcium-release channel activity
10.	GO0005528 : FK506 binding

Example in UniProt

"What is the subcellular location of protein MEN1?"

GO Level	GO Term	
6	GO0035097 : histone methyltransferase complex	√
5	GO0000785 : chromatin	1
5	GO0016363 : nuclear matrix	1
4	GO0005829 : cytosol	1
3	GO0032154 : cleavage furrow	

GOCat

R	ank	GO Term
	1.	GO0005634 : nucleus
	2.	GO0005737 : cytoplasm
	3.	GO0005886 : plasma membrane
	4.	GO0005615 : extracellular space
	5.	GO0005887: integral to plasma membrane
	6.	GO0005739 : mitochondrion
√	7.	GO0005829 : cytosol
	8.	GO0005576: extracellular region
1	9.	GO0035097 : histone methyltransferase
_		complex
1	10.	GO0000785 : chromatin
1	15.	GO0016363 : nuclear matrix

Qualitative evaluation

Relevant vs irrelevant: 82% - 18%

Conclusion and future work

- Automatic assignment of GO categories ~ 43%
 [Camon et al 2003: GO kappa ~ 40%]
- Classification model improves faster than drift
 [→ Consistency of annotation guidelines ☺]

 Next: Effective integration into the EAGLi' question-answering platform

Collaborations

 Automatic Functional Annotation of PubChem BioAssays

Generates semantic similarity clusters

Automatically populating large protein datasets

All genes in COMBREX (3302393 genes)

COMputational BRidges to Experiments

Please visit EAGLi, the Bio-medical question answering engine http://eagl.unige.ch/EAGLi/!

The Gene Ontology Categorizer: http://eagl.unige.ch/GOCat/

Other resources... TWINC (patent retrieval...) http://bitem.hesge.ch

Acknowledgments

- Swiss-prot group (SIB): Anne-Lise Veuthey, Yoannis Yenarios
- U. Indiana/SCRIPPS:
 Rajarshi Guha / Stephan Schurer
- The COMBREX project: Martin Steffen
- NextProt: Pascale Gaudet

- SNF Grant: EAGL # 120758
- EU FP7: <u>www.KHRESMOI.eu</u> # 257528